Pycharm 报错:AttributeError: module ‘matplotlib‘ has no attribute ‘verbose‘

此篇博客介绍了如何在PyCharm中解决matplotlib模块中出现的verbose属性错误,通过修改默认设置,禁用某个选项后问题得以解决。

问题

    verbose = matplotlib.verbose
AttributeError: module 'matplotlib' has no attribute 'verbose'

解决

这是 Pycharm 默认设置的问题:进入设置,看图去掉勾,然后应用保存,即可。

在这里插入图片描述

python-BaseException Traceback (most recent call last): File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydevd.py", line 1570, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/home/chenchengzhang/PycharmProjects/PythonProject/yolo/train.py", line 129, in <module> model = YOLO(opt.cfg) File "/home/chenchengzhang/anaconda3/envs/mytorch/lib/python3.8/site-packages/ultralytics/models/yolo/model.py", line 23, in __init__ super().__init__(model=model, task=task, verbose=verbose) File "/home/chenchengzhang/anaconda3/envs/mytorch/lib/python3.8/site-packages/ultralytics/engine/model.py", line 143, in __init__ self._new(model, task=task, verbose=verbose) File "/home/chenchengzhang/anaconda3/envs/mytorch/lib/python3.8/site-packages/ultralytics/engine/model.py", line 251, in _new self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model File "/home/chenchengzhang/anaconda3/envs/mytorch/lib/python3.8/site-packages/ultralytics/nn/tasks.py", line 319, in __init__ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist File "/home/chenchengzhang/anaconda3/envs/mytorch/lib/python3.8/site-packages/ultralytics/nn/tasks.py", line 950, in parse_model Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() File "<string>", line 1, in <module> AttributeError: module 'torch.nn' has no attribute 'Relu' Failed to enable GUI event loop integration for 'qt' Traceback (most recent call last): File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydev_ipython/matplotlibtools.py", line 33, in do_enable_gui enable_gui(guiname) File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydev_ipython/inputhook.py", line 565, in enable_gui return gui_hook(app) File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydev_ipython/inputhook.py", line 183, in enable_qt from pydev_ipython.qt_for_kernel import QT_API, QT_API_PYQT5, QT_API_PYQT6 File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydev_ipython/qt_for_kernel.py", line 124, in <module> QtCore, QtGui, QtSvg, QT_API = load_qt(api_opts) File "/home/chenchengzhang/pycharm/pycharm-community-2024.3.5/plugins/python-ce/helpers/pydev/pydev_ipython/qt_loaders.py", line 288, in load_qt raise ImportError(""" ImportError: Could not load requested Qt binding. Please ensure that PyQt4 >= 4.7 or PySide >= 1.0.3 is available, and only one is imported per session. Currently-imported Qt library: 'pyqt5' PyQt4 installed: False PyQt5 installed: False PyQt6 installed: False PySide >= 1.0.3 installed: False Tried to load: ['pyqt5'] Backend QtAgg is interactive backend. Turning interactive mode on.
09-02
Restoring model weights from the end of the best epoch: 48. 📈 开始评估... 2025-11-01 21:18:49.014503: E tensorflow/core/framework/node_def_util.cc:676] NodeDef mentions attribute use_unbounded_threadpool which is not in the op definition: Op<name=MapDataset; signature=input_dataset:variant, other_arguments: -> handle:variant; attr=f:func; attr=Targuments:list(type),min=0; attr=output_types:list(type),min=1; attr=output_shapes:list(shape),min=1; attr=use_inter_op_parallelism:bool,default=true; attr=preserve_cardinality:bool,default=false; attr=force_synchronous:bool,default=false; attr=metadata:string,default=""> This may be expected if your graph generating binary is newer than this binary. Unknown attributes will be ignored. NodeDef: {{node ParallelMapDatasetV2/_15}} 2025-11-01 21:18:54.057158: E tensorflow/core/framework/node_def_util.cc:676] NodeDef mentions attribute use_unbounded_threadpool which is not in the op definition: Op<name=MapDataset; signature=input_dataset:variant, other_arguments: -> handle:variant; attr=f:func; attr=Targuments:list(type),min=0; attr=output_types:list(type),min=1; attr=output_shapes:list(shape),min=1; attr=use_inter_op_parallelism:bool,default=true; attr=preserve_cardinality:bool,default=false; attr=force_synchronous:bool,default=false; attr=metadata:string,default=""> This may be expected if your graph generating binary is newer than this binary. Unknown attributes will be ignored. NodeDef: {{node ParallelMapDatasetV2/_15}} ✅ 有效样本数量: 1464/1500 🎯 准确率: 0.5786 📋 分类报告: precision recall f1-score support positive 0.53 0.93 0.67 500 neutral 0.55 0.30 0.39 496 negative 0.74 0.50 0.59 468 accuracy 0.58 1464 macro avg 0.61 0.58 0.55 1464 weighted avg 0.61 0.58 0.55 1464 Traceback (most recent call last): File "D:\PyCharm\panxi\西北铜镍\text\多模态特征融合3.0.py", line 418, in <module> main() File "D:\PyCharm\panxi\西北铜镍\text\多模态特征融合3.0.py", line 409, in main acc, y_pred, probs = model.evaluate(image_paths, chemical_data, labels) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\PyCharm\panxi\西北铜镍\text\多模态特征融合3.0.py", line 391, in evaluate plt.show() File "D:\Python\Lib\site-packages\matplotlib\pyplot.py", line 613, in show return _get_backend_mod().show(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\PyCharm\PyCharm 2024.1\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py", line 41, in __call__ manager.show(**kwargs) File "D:\PyCharm\PyCharm 2024.1\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py", line 144, in show self.canvas.show() File "D:\PyCharm\PyCharm 2024.1\plugins\python\helpers\pycharm_matplotlib_backend\backend_interagg.py", line 85, in show buffer = self.tostring_rgb() ^^^^^^^^^^^^^^^^^ AttributeError: 'FigureCanvasInterAgg' object has no attribute 'tostring_rgb'. Did you mean: 'tostring_argb'? 又出现了这个错误, 而且我在运行的过程中看见了这个: 2025-11-01 21:18:24.757910: I tensorflow/core/framework/local_rendezvous.cc:405] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence [[{{node IteratorGetNext}}]] 不知道是不是它影响的
最新发布
11-02
# LSTM for international airline passengers problem with regression framing import numpy import matplotlib.pyplot as plt from pandas import read_csv import math from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error """ 用一个步长预测一个,监督学习数据类型1->1 X Y 112 118 118 132 132 129 129 121 121 135 """ # 将数据截取成1->1的监督学习格式 def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return numpy.array(dataX), numpy.array(dataY) # 定义随机种子,以便重现结果 numpy.random.seed(7) # 加载数据 dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python') dataset = dataframe.values dataset = dataset.astype('float32') # 缩放数据 scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # 分割2/3数据作为测试 train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] # 预测数据步长为1,一个预测一个,1->1 look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) # 重构输入数据格式 [samples, time steps, features] = [93,1,1] trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # 构建 LSTM 网络 model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) # 对训练数据的Y进行预测 trainPredict = model.predict(trainX) # 对测试数据的Y进行预测 testPredict = model.predict(testX) # 对数据进行逆缩放 trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # 计算RMSE误差 trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) print('Train Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) print('Test Score: %.2f RMSE' % (testScore)) # 构造一个和dataset格式相同的数组,共145行,dataset为总数据集,把预测的93行训练数据存进去 trainPredictPlot = numpy.empty_like(dataset) # 用nan填充数组 trainPredictPlot[:, :] = numpy.nan # 将训练集预测的Y添加进数组,从第3位到第93+3位,共93行 trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict # 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据数据放进去 testPredictPlot = numpy.empty_like(dataset) testPredictPlot[:, :] = numpy.nan # 将测试集预测的Y添加进数组,从第94+4位到最后,共44行 testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict # 画图 plt.plot(scaler.inverse_transform(dataset)) plt.plot(trainPredictPlot) plt.plot(testPredictPlot) plt.show()def experimental_type_proto(cls) -> Type[types_pb2.SerializedDType]: AttributeError: module 'tensorflow.core.framework.types_pb2' has no attribute 'SerializedDType' 进程已结束,退出代码为 1为什么在pycharm中运行会报错
08-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值