本节纲要
- 什么是图(network)
- 什么是最小生成树 (minimum spanning tree)
- 最小生成树的算法
什么是图(network)?
这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络。在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来。图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图:

为了更好地说明问题,下面我们看一个比较老套的通信问题:
在各大城市中建设通信网络,如下图所示,每个圆圈代表一座城市,而边上的数字代表了建立通信连接的价格。那么,请问怎样才能以最小的价格使各大城市能直接或者间接地连接起来呢?

我们需要注意两点:
- 最小的价格
- 各大城市可以是直接或者间接相连的
稍稍留心可以发现,题目的要求是,城市只需要直接或者间接相连,因此,为了节省成本,我们稍稍优化一下上述方案如下:

可以看到,我们砍掉了原先在AD,BE之间的两条道路,建设价格自然就降下来了。当然这个方案也是符合我们题目的要求的。按照国际惯例,这里要说蛋是了。上面的实例由于数据很简单,优化的方案很easy就看出来了。但在实际中,数据量往往是非常庞大的。所以,我们更倾向于设计一种方法,然后利用计算机强大的运算能力帮我们处理这些数据得出最优的方案。
那么,针对上述问题,我们一起来看看如何应用图的相关知识来实现吧。
什么是最小生成树(minimum spanning tree)
为了直观,还是用图片给大家解释一下:

-
对于一个图而言,它可以生成很多树,如右侧图2,图3就是由图1生成的。
-
从上面可以看出生成树是将原图的全部顶点以最少的边连通的子图,对于有n个顶点的连通图,生成树有n-1条边,若边数小于此数就不可能将各顶点连通,如果边的数量多于n-1条边,必定会产生回路。
-
对于一个带权连通图,生成树不同,树中各边上权值总和也不同,权值总和最小的生成树则称为图的最小生成树。
关于最小生成树的算法(Prim算法和Kruskal算法)
Prim算法
基本思想:
假设有一个无向带权图G=(V,E),它的最小生成树为MinTree=(V,T),其中V为顶点集合,T为边的集合。求边的集合T的步骤如下:
①令 U={u0},T={}。其中U为最小生成树的顶点集合,开始时U中只含有顶点u0(u0可以为集合V中任意一项),在开始构造最小生成树时我们从u0出发。
②对所有u∈U,v∈(V – U)(其中u,v表示顶点)的边(u,v)中,找一条权值最小的边(u’,v’),将这条边加入到集合T中,将顶点v’加入集合U中。
③直到将V中所有顶点加入U中,则算法结束,否则一直重复以上两步。
④符号说明:我们用大写字母表示集合,用小写字母表示顶点元素,用<>表示两点之间的边。
为了更好的说明问题,我们下面一步一步来为大家展示这个过程。
- 初始状态:U={a} V={b,c,d,e } T={}
- 集合U和V相关联的权值最小的边是<a,b style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,于是我们将b加入U。U={a,b},V={d,c,e },T={<a,b style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">}
- 此时集合U和V相关联的权值最小的边是<b,c style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,于是我们将c加入U。U={a,b,c} ,V={d,e },T={<a,b style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">, <b,c style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">}
- 显然此时集合U和V中相关联的权值最小的边是<c,d style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,于是我们将d加入U。U={a,b,c,d} ,V={e },T={<a,b style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">, <b,c style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,<c,d style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">}
- 最后集合U和V中相关联的权值最小的边是<d,e style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,于是将e加入U。U={a,b,c,d,e} ,V={},T={<a,b style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">, <b,c style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,<c,d style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">,<d,e style="font-size: inherit; color: inherit; line-height: inherit; margin: 0px; padding: 0px;">}。
到此所有点访问完毕。
代码实现
1//prime算法
2//将城市X标记为visit=true时,就表示该城市加入到集合U,用sum累加记录边的总费用
3