Leetcode 712. Minimum ASCII Delete Sum for Two Strings

LeetCode 最小ASCII删除求和
本文介绍了一道LeetCode题目——最小ASCII删除求和的解决方案,通过动态规划找到两个字符串s1和s2变为相同的最低ASCII删除代价。文章详细解析了状态转移方程,并给出了实现代码。

https://leetcode.com/problems/minimum-ascii-delete-sum-for-two-strings/description/
http://blog.youkuaiyun.com/rrrfff/article/details/7523437
最长公共子序列解析
https://discuss.leetcode.com/topic/107980/c-dp-with-explanation
转移方程的详解来自@zestypanda,非常感谢!

Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:

Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

Example 2:

Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d]+101[e]+101[e] to the sum.  Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

Note:
0 < s1.length, s2.length <= 1000.
All elements of each string will have an ASCII value in [97, 122].

这题就是LCS的变种,删除多余的字符,使得s1和s2相等,只不过需找过程中删除的cost最小

d[i][j]表示s1.substring(0,i)s2.substring(0,j)的LCS的长度, 那么

if (s1[i-1]==s2[j-1])
    // 相等LCS长度+1
    d[i][j]=d[i-1][j-1]+1;
else
    // 否则从前面找
    d[i][j]=max(d[i-1][j], d[i][j-1]);

d[i][j]表示s1.substring(0,i)s2.substring(0,j)删除若干个字符后相等的最小cost,那么

if (s1[i-1]==s2[j-1])
    // 不需要删除,cost为0 不增加
    d[i][j]=d[i-1][j-1] + 0;
else
    // 删除s1[i-1]或者s2[j-1],这样才能让删除后的s1和s2相等
    // 删除的代价就是ASCII值
    d[i][j]=min(d[i-1][j] + s1[i-1], d[i][j-1]+s2[j-1]);

初始化边界,若s1和s2中有空串,那么就得全部删掉才能使得两个空串相等,所以边界就是空串,d[i][0]d[0][j],当然d[0][0]表示都是空串,不需要删除,代价为0

d[0][0] = 0;
for (int i = 1; i <= s1.size(); ++i)
    d[i][0] = d[i-1][0] + s1[i-1];
for (int j = 1; j <= s2.size(); ++j)
    d[0][j] = d[0][j-1] + s2[j-1];

代码如下:

class Solution {
public:
    int minimumDeleteSum(string s1, string s2) {
        int n = s1.size();
        int m = s2.size();
        int dp[n+1][m+1] = {0};
        for (int i = 1; i <= n; i++) {
            dp[i][0] = dp[i-1][0] + s1[i-1];
        }
        for (int j = 1; j <= m; j++) {
            dp[0][j] = dp[0][j-1] + s2[j-1];
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (s1[i-1] == s2[j-1]) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = min(dp[i-1][j] + s1[i-1], dp[i][j-1] + s2[j-1]);
                }
            }
        }
        return dp[n][m];
    }
};
内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值