Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1 6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
# include <algorithm>中:
upper_bound(a, a+n, x);在左闭右开区间a到a+n地址之间;找到大于x的最小值的位置:
lower_bound(a, a+n,x) ;在左闭右开区间a到a+n地址之间;找到大于或等于的值的位置;
//方法一:二分法求解;
# include <cstdio>
# include <string>
# include <cstring>
# include <iostream>
# include <algorithm>
using namespace std;
int a[4005],b[4005],c[4005],d[4005];
int sum[16000025],sum2[16000025];
int main()
{
int t;
cin>>t;
while(t--)
{
int n,i,j,len=0,ans=0;;
cin>>n;
for(i=0;i<n;i++)
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
sum[len++]=a[i]+b[j];
len=0;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
sum2[len++]=c[i]+d[j];
sort(sum2,sum2+len);
for(i=0;i<len;i++)
{
int l=0,r=len-1,mid;
while(l<r)
{
mid=(r+l)>>1;
if(sum[i]<-sum2[mid]) l=mid+1;
else r=mid;
}
while(sum2[l]==-sum[i]&&l<len)
{
ans++;
l++;
}
}
printf("%d\n",ans);
if(t) printf("\n");
}
return 0;
}
//方法二:用函数upper_boud(),lower_boud()代替二分:
# include <iostream>
# include <cstdio>
# include <algorithm>
using namespace std;
int a[4005],b[4005],c[4005],d[4005];
int sum[16000005];
int main()
{
int t;
cin>>t;
while(t--)
{
int n,i,j,cnt=0,ans=0;
cin>>n;
for(i=0;i<n;i++)
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
sum[cnt++]=a[i]+b[j];
sort(sum,sum+cnt);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
ans+=upper_bound(sum,sum+cnt,-c[i]-d[j])-lower_bound(sum,sum+cnt,-c[i]-d[j]);
printf("%d\n",ans);
if(t!=0) printf("\n");
}
return 0;
}