Table of Content
Alpha GO
虽然大家会说AlexNet是深度学习的开始,但真正引爆整个AI行业的可以说是Alpha GO(人称阿尔法狗)。Alphabet子公司Deepmind开发的围棋算法在01博弈游戏上成功击败人类,除了传统的把神经网络往深里走,然后通过过去对局的学习意外,还加入了一些探索性的策略使得人们认为它将是未来的AI发展方向。如果你英语够好也可以直接阅读它的原文,这里并不是我想说的重点。我们要沉下心来反思这个浮躁的技术。
神经网络
一种传统的机器学习方法,它就好像是一颗横着放的树加上一些策略,看起来像人类的思考方式。它有人脑神经元的特质,像生物感受器一样。有多个输入端和多个输出端。同一个细胞可能要受到多个来源的输入才可能传播到下个神经细胞。
神经网络完美地复制了这一结构,它早在上个世纪初就已经有人用电阻地方式去模拟这样地算法,可是最终以失败告终,最直接地原因就是能力不是几十个神经元可以体现出来的。像万金油ResNet152的层数到达了152层神经网络,训练的过程对显卡要求是非常的高,如果使用Pytorch那么请自己查2019年Nvidia 2080Ti 8G现存以上显卡价格。不得不佩服人脑的伟大,可以提供几亿个这样的网络同时互相作用。