The Stable Marriage Problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 608 Accepted Submission(s): 305
Problem Description
The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:
a set M of n males;
a set F of n females;
for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).
A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.
Given preferable lists of males and females, you must find the male-optimal stable marriage.
a set M of n males;
a set F of n females;
for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).
A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.
Given preferable lists of males and females, you must find the male-optimal stable marriage.
Input
The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.
Output
For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.
Sample Input
2 3 a b c A B C a:BAC b:BAC c:ACB A:acb B:bac C:cab 3 a b c A B C a:ABC b:ABC c:BCA A:bac B:acb C:abc
Sample Output
a A b B c C a B b A c C
Source
此题也是一个裸的稳定婚姻问题,也没什么好说的,直接看代码就好了
#include <cstdio>
#include <cstring>
#include <queue>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=50;
int g[maxn][maxn],b[maxn][maxn],visit[maxn][maxn];
int bf[maxn],gf[maxn];
char ch[maxn],str[maxn];
map<char,int> G,M;
map<int,char> GG,MM;
queue<int> q;
int T,n;
void init()
{
G.clear(),M.clear(),GG.clear(),MM.clear();
memset(visit,0,sizeof(visit));
memset(bf,0,sizeof(bf));
while(!q.empty()) q.pop();
}
void find(int x)
{
for(int i=n; i>=1; i--)
{
if(visit[x][i]) continue;
visit[x][i] = 1;
int y=b[x][i];
if(!bf[y])
{
bf[y] = x;
gf[x] = y;
return;
}
else
{
if(g[y][x] > g[y][ bf[y]] )
{
q.push(bf[y]);
bf[y] = x;
gf[x] = y;
return;
}
}
}
}
void Gale_Shapley()
{
for(int i=1; i<=n; i++) q.push(i);
while(!q.empty())
{
int x=q.front();
q.pop();
find(x);
}
sort(ch+1,ch+n+1);
for(int i=1; i<=n; i++)
{
printf("%c %c\n",ch[i],MM[gf[ G[ ch[i] ] ]]);
}
}
int main()
{
cin >> T;
while(T--)
{
cin >> n;
init();
for(int i=1; i<=n; i++)
{
cin >> ch[i];
G[ch[i]] = i;
GG[i] = ch[i];
}
for(int i=1; i<=n; i++)
{
cin >> ch[n+i];
M[ch[n+i]] = i;
MM[i] = ch[i+n];
}
for(int i=1; i<=n; i++)
{
scanf("%s",str+1);
int x=G[str[1]];
for(int j=3; j<=n+2; j++)
{
int y=M[str[j]];
b[x][n-j+3] = y;
}
}
for(int i=1; i<=n; i++)
{
scanf("%s",str+1);
int x=M[str[1]];
for(int j=3; j<=n+2; j++)
{
int y=G[str[j]];
g[x][y] = n-j+3;
}
}
Gale_Shapley();
if(T) puts("");
}
}
本文介绍了一种解决稳定婚姻问题的方法,该问题的目标是在两组人员中找到最稳定的配对方式,确保没有一方愿意与其他组的成员重新配对。通过使用 Gale-Shapley 算法,文章详细阐述了如何实现男优稳定匹配,并提供了完整的 C++ 实现代码。
449

被折叠的 条评论
为什么被折叠?



