While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
两种路径,一种双向的,一种单向的,把单向的变成负数,然后用Bellman-Ford,判断负全环,另外,数组开大点
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define MAX 0x3f3f3f
int n, m,k;
int cont = 0;
struct node
{
int u, v, w;
} ls[5100];
int d[1500];
void BF()
{
int i, j;
for(i = 1; i <= n; i++)
d[i] = MAX;
d[1] = 0;
bool flag ;
for(i = 0; i < n-1; i++)
{
flag = false;
for(j = 0; j < cont; j++)
{
int x = ls[j].u, y = ls[j].v;
if(d[y] > d[x]+ls[j].w)
{
d[y] = d[x]+ls[j].w;
flag = true;
}
}
if(!flag)
break;
}
flag = false;
for(j = 0; j < cont; j++)
{
int x = ls[j].u, y = ls[j].v;
if(d[y] > d[x]+ls[j].w)
{
printf("YES\n");
flag = true;
break;
}
}
if(!flag)
printf("NO\n");
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
cont = 0;
for(int i = 0; i < m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
ls[cont].u = u;
ls[cont].v = v;
ls[cont++].w = w;
ls[cont].u = v;
ls[cont].v = u;
ls[cont++].w = w;
}
for(int i = 0; i < k; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
w = -w;
ls[cont].u = u;
ls[cont].v = v;
ls[cont++].w = w;
}
BF();
}
return 0;
}

在本文中,我们跟随农民FJ的脚步,探索他的农场中的奇妙虫洞。通过详细的地图描述,我们了解了如何在一个农场内,从一个地点出发,经过路径和虫洞的组合,回到出发点之前的时间。文章深入探讨了使用Bellman-Ford算法来解决这个问题的策略,并提供了代码实现。读者将了解到如何通过调整路径权重和应用动态规划技巧,实现时间旅行的可能。
185

被折叠的 条评论
为什么被折叠?



