Python数据可视化:豆瓣电影TOP250

本文介绍了如何使用Scrapy框架爬取豆瓣电影TOP250信息,并进行数据可视化分析,展示了电影的上映年份分布、中外电影对比、评分情况等,揭示了电影市场的某些趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。

作者:法纳斯特,Python爱好者,专注爬虫,数据分析及可视化
微信公众号:法纳斯特(ID: walker398)


豆瓣电影TOP250,对于众多爬虫爱好者,应该并不陌生。


很多人都会以此作为第一个练手的小项目。


当然这也多亏了豆瓣的包容,没有加以太多的反爬措施,对新手比较友好。


本期通过Scrapy框架,对豆瓣电影TOP250信息进行爬取。


同时对获取的数据进行可视化分析,给大家带来一个不一样的TOP250。



/ 01 / Scrapy


之前了解了pyspider框架的使用,但是就它而言,只能应用于一些简单的爬取。


对于反爬程度高的网站,它就显得力不从心。


那么就轮到Scrapy上场了,目前Python中使用最广泛的爬虫框架。


当然目前我学习的都是简单爬虫,上述内容都是道听途说,并不是切身体会。


Scrapy的安装相对复杂,依赖的库较多。


不过通过度娘,最后我是成功安装了的。放在C盘,如今我的C盘要爆炸。


首先任意文件夹下命令行运行scrapy startproject doubanTop250,创建一个名为doubanTop250的文件夹。


然后在文件夹下的py文件中改写程序。


进入文件夹里,命令行运行scrapy genspider douban movie.douban.com/top250。


最后会生成一个douban.py文件,Scrapy用它来从网页里抓取内容,并解析抓取结果。


最终修改程序如下。


 
 

import scrapy
from scrapy import Spider
from doubanTop250.items import Doubantop250Item


class DoubanSpider(scrapy.Spider):
    name = 'douban'
    allowed_domains = ['douban.com']
    start_urls = ['https://movie.douban.com/top250/']

    def parse(self, response):
        lis = response.css('.info')
        for li in lis:
            item = Doubantop250Item()
            # 利用CSS选择器获取信息
            name = li.css('.hd span::text').extract()
            title = ''.join(name)
            info = li.css('p::text').extract()[1].replace('\n', '').strip()
&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值