文章作者:Tyan
博客:noahsnail.com | 优快云 | 简书
1. Description

2. Solution
- Version 1
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
set<vector<int>> s;
sort(candidates.begin(), candidates.end());
vector<int> combination;
combinationSum(s, candidates, target, 0, combination);
return vector<vector<int>>(s.begin(), s.end());
}
private:
void combinationSum(set<vector<int>>& result, vector<int>& candidates, int& target, int sum, vector<int> combination) {
if(sum > target) {
return;
}
if(sum == target) {
sort(combination.begin(), combination.end());
result.insert(combination);
return;
}
for(int i = 0; i < candidates.size(); i++) {
combination.push_back(candidates[i]);
combinationSum(result, candidates, target, sum + candidates[i], combination);
combination.pop_back();
}
}
};
- Version 2
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> result;
sort(candidates.begin(), candidates.end());
vector<int> combination;
combinationSum(result, candidates, combination, target, 0, 0);
return result;
}
private:
void combinationSum(vector<vector<int>>& result, vector<int>& candidates, vector<int> combination, int& target, int sum, int begin) {
if(sum > target) {
return;
}
if(sum == target) {
result.push_back(combination);
return;
}
for(int i = begin; i < candidates.size(); i++) {
combination.push_back(candidates[i]);
combinationSum(result, candidates, combination, target, sum + candidates[i], i);
combination.pop_back();
}
}
};
- Version 3
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> result;
sort(candidates.begin(), candidates.end());
vector<int> combination;
combinationSum(result, candidates, combination, target, 0, 0);
return result;
}
private:
void combinationSum(vector<vector<int>>& result, vector<int>& candidates, vector<int> combination, int& target, int sum, int begin) {
if(sum > target) {
return;
}
if(sum == target) {
result.push_back(combination);
return;
}
for(int i = begin; i < candidates.size(); i++) {
combination.push_back(candidates[i]);
combinationSum(result, candidates, combination, target, sum + candidates[i], i);
combination.pop_back();
}
}
};

本文深入探讨了组合求和问题的三种解决方案,通过详细的代码示例,讲解了如何使用递归算法找到所有可能的组合,使得这些组合中的元素之和等于目标值。文章提供了三个不同版本的C++实现,帮助读者理解并掌握这一复杂但实用的算法。
5万+

被折叠的 条评论
为什么被折叠?



