HDU5543 Pick The Sticks [背包dp变形]

题意: 用一个线性的箱子放黄金, 金条可以露出来一般而不掉出来。问给定金条长度,价值,箱子长度,问最多能放多少金条。
思路: 如果没有可以露出来的限制,那么为裸的01背包问题。现在多了这个限制,是在状态的定义与转移的时候多了几种情况。
状态:dp[i][0/1/2]表示背包容量为i时, [0]表示没有露出来的金条的情况, [1]表示有一边露出来,[2]表示两边都有露出来的ans
决策:
dp[i][0] 只能由 dp[i-w[i]][0]转移
dp[i][1] 可以由 dp[i-w[i]][1]和dp[i-w[i]/2][0]转移
dp[i][2] 可以由 dp[i-w[i]][2]和dp[i-w[i]/2][0/1]转移
边界条件:dp[0][0/1/2] = 0

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
#include<list>
#include<stack>
#include<cmath>
using namespace std;
typedef long long LL;
LL dp[4015][3];
LL w[2005], v[2005];
int main()
{
    ios::sync_with_stdio(false);
    #ifndef ONLINE_JUDGE
    freopen("input.txt", "r", stdin);
    #endif // ONLINE_JUDGE
    int t;
    cin >> t;
    int Case = 1;
    while(t--)
    {
        int n, m;
        cin >> n >> m;
        m*=2;
        LL mm = 0;
        for(int i = 0; i < n; ++i)
        {
             cin >> w[i] >> v[i];
             w[i]*=2;
             mm = max(mm, v[i]);
        }
        memset(dp, 0, sizeof(dp));
        for(int i = 0; i < n; ++i)
        {
            for(int j = m; j >= w[i]/2; --j)
            {
               for(int k=0;k<=2;k++)
                {
                    if(k>=1)
                        dp[j][k] = max(dp[j-w[i]/2][k-1]+v[i], dp[j][k]);
                    if(j>=w[i])
                    {
                        dp[j][k] = max(dp[j-w[i]][k]+v[i], dp[j][k]);
                    }
                    mm = max(dp[j][k], mm);
                }
            }
        }
        cout << "Case #" << Case++ << ": ";
        cout << mm << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值