金磊 发自 凹非寺
量子位 | 公众号 QbitAI
深度学习三巨头之一的Yoshua Bengio,刚刚发布了一篇有趣的新论文——
RNN就是所需的全部吗?
Were RNNs All We Needed?

不仅论文的名字有意思,其结论更是精彩。
研究表明,精简十几年前的RNN们,性能上可以与最近序列模型(如Transformer等)相媲美!

具体而言,Bengio等人重新审视了诸如LSTM(1997)和GRU(2014)这些传统的RNN,认为这些模型的缺点是由于需要时间反向传播 (BPTT) 而导致速度较慢。
所以他们直接大刀阔斧地移除了LSTM和GRU中的隐藏状态依赖,让它们不再需要BPTT,从而可以高效地并行训练。
而精简改良版的RNN们,名字分别叫做minLSTM和minGRU。
它们和传统RNN相比,不仅训练时所需的参数量大幅减少,并且完全可并行化。
嗯,是颇有一种大道至简的感觉了。
那么Bengio等人具体又是如何实现的?我们继续往下看。
精简版RNN
Transformer和它的变体们可以说是近几年大热的架构,但与此同时缺点也是较为明显,那便是在处理长序列时的计算复杂度问题。
具体来说,Transformer模型在序列长度上的计算复杂度是二次方的,

最低0.47元/天 解锁文章
57

被折叠的 条评论
为什么被折叠?



