socket缓冲区和数据的传递过程,可以看到数据的接收和发送是无关的,read()/recv() 函数不管数据发送了多少次,都会尽可能多的接收数据。也就是说,read()/recv() 和 write()/send() 的执行次数可能不同。
例如,write()/send() 重复执行三次,每次都发送字符串"abc",那么目标机器上的 read()/recv() 可能分三次接收,每次都接收"abc";也可能分两次接收,第一次接收"abcab",第二次接收"cabc";也可能一次就接收到字符串"abcabcabc"。
假设我们希望客户端每次发送一位学生的学号,让服务器端返回该学生的姓名、住址、成绩等信息,这时候可能就会出现问题,服务器端不能区分学生的学号。例如第一次发送 1,第二次发送 3,服务器可能当成 13 来处理,返回的信息显然是错误的。
这就是数据的“粘包”问题,客户端发送的多个数据包被当做一个数据包接收。也称数据的无边界性,read()/recv() 函数不知道数据包的开始或结束标志(实际上也没有任何开始或结束标志),只把它们当做连续的数据流来处理。
下面的代码演示了粘包问题,客户端连续三次向服务器端发送数据,服务器端却一次性接收到所有数据。
服务器端代码 server.cpp:
#include <stdio.h>
#include <windows.h>
#pragma comment (lib, "ws2_32.lib") //加载 ws2_32.dll
#define BUF_SIZE 100
int main(){
WSADATA wsaData;
WSAStartup( MAKEWORD(2, 2), &wsaData);
//创建套接字
SOCKET servSock = socket(AF_INET, SOCK_STREAM, 0);
//绑定套接字
sockaddr_in sockAddr;
memset(&sockAddr, 0, sizeof(sockAddr)); //每个字节都用0填充
sockAddr.sin_family = PF_INET; //使用IPv4地址
sockAddr.sin_addr.s_addr = inet_addr("127.0.0.1"); //具体的IP地址
sockAddr.sin_port = htons(1234); //端口
bind(servSock, (SOCKADDR*)&sockAddr, sizeof(SOCKADDR));
//进入监听状态
listen(servSock, 20);
//接收客户端请求
SOCKADDR clntAddr;
int nSize = sizeof(SOCKADDR);
char buffer[BUF_SIZE] = {0}; //缓冲区
SOCKET clntSock = accept(servSock, (SOCKADDR*)&clntAddr, &nSize);
Sleep(10000); //注意这里,让程序暂停10秒
//接收客户端发来的数据,并原样返回
int recvLen = recv(clntSock, buffer, BUF_SIZE, 0);
send(clntSock, buffer, recvLen, 0);
//关闭套接字并终止DLL的使用
closesocket(clntSock);
closesocket(servSock);
WSACleanup();
return 0;
}
客户端代码 client.cpp:
#include <stdio.h>
#include <stdlib.h>
#include <WinSock2.h>
#include <windows.h>
#pragma comment(lib, "ws2_32.lib") //加载 ws2_32.dll
#define BUF_SIZE 100
int main(){
//初始化DLL
WSADATA wsaData;
WSAStartup(MAKEWORD(2, 2), &wsaData);
//向服务器发起请求
sockaddr_in sockAddr;
memset(&sockAddr, 0, sizeof(sockAddr)); //每个字节都用0填充
sockAddr.sin_family = PF_INET;
sockAddr.sin_addr.s_addr = inet_addr("127.0.0.1");
sockAddr.sin_port = htons(1234);
//创建套接字
SOCKET sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock, (SOCKADDR*)&sockAddr, sizeof(SOCKADDR));
//获取用户输入的字符串并发送给服务器
char bufSend[BUF_SIZE] = {0};
printf("Input a string: ");
gets(bufSend);
for(int i=0; i<3; i++){
send(sock, bufSend, strlen(bufSend), 0);
}
//接收服务器传回的数据
char bufRecv[BUF_SIZE] = {0};
recv(sock, bufRecv, BUF_SIZE, 0);
//输出接收到的数据
printf("Message form server: %s\n", bufRecv);
closesocket(sock); //关闭套接字
WSACleanup(); //终止使用 DLL
system("pause");
return 0;
}
先运行 server,再运行 client,并在10秒内输入字符串"abc",再等数秒,服务器就会返回数据。运行结果如下:
Input a string: abc
Message form server: abcabcabc
本程序的关键是 server.cpp 第31行的代码Sleep(10000);
,它让程序暂停执行10秒。在这段时间内,client 连续三次发送字符串"abc",由于 server 被阻塞,数据只能堆积在缓冲区中,10秒后,server 开始运行,从缓冲区中一次性读出所有积压的数据,并返回给客户端。
另外还需要说明的是 client.cpp 第34行代码。client 执行到 recv() 函数,由于输入缓冲区中没有数据,所以会被阻塞,直到10秒后 server 传回数据才开始执行。用户看到的直观效果就是,client 暂停一段时间才输出 server 返回的结果。
client 的 send() 发送了三个数据包,而 server 的 recv() 却只接收到一个数据包,这很好的说明了数据的粘包问题。
Nagle算法
出现粘包是和Nagle算法有关
参考:https://blog.youkuaiyun.com/QQ2558030393/article/details/90475410
粘包处理
TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。粘包可能由发送方造成,也可能由接收方造成。TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据,造成多个数据包的粘连。如果接收进程不及时接收数据,已收到的数据就放在系统接收缓冲区,用户进程读取数据时就可能同时读到多个数据包。因为系统传输的数据是带结构的数据,需要做分包处理。
为了适应高速复杂网络条件,我们设计实现了粘包处理模块,由接收方通过预处理过程,对接收到的数据包进行预处理,将粘连的包分开。为了方便粘包处理,提高处理效率,在接收环节使用了环形缓冲区来存储接收到的数据。其结构如表1所示。
环形缓冲跟每个TCP套接字绑定。在每个TCP的SOCKET_OBJ创建时,同时创建一个PRINGBUFFER结构并初始化。这时候,pRingBuf指向环形缓冲区的内存首地址,pRead、pWrite指针也指向它。pLastWrite指针在这时候没有实际意义。初始化之后的结构如图1所示。
图1 初始化后的环形缓冲区
在每次投递一个TCP的接收操作时,从RINGBUFFER获取内存作接收缓冲区,一般规定一个最大值L1作为可以写入的最大数据量。这时把pWrite的值赋给BUFFER_OBJ的buf字段,把L1赋给bufLen字段。这样每次接收到的数据就从pWrite开始写入缓冲区,最多写入L1字节,如图 2。
图2 分配缓冲后的环形缓冲
如果某次分配过程中,pWrite到缓冲区结束的位置pEnd长度不够最小分配长度L1,为了提高接收效率,直接废弃最后一段内存,标记pLastWrite为pWrite。然后从pRingBuf开始分配内存,如图 3。
图 3 使用到结尾的环形缓冲
特殊情况下,如果处理包速度太慢,或者接收太快,可能导致未处理包占用大部分缓冲区,没有足够的缓冲区分配给新的接收操作,如图4。这时候直接报告错误即可。
图 4没有足够接收缓冲的环形缓冲
当收到一个长度为L数据包时,需要修改缓冲区的指针。这时候已经写入数据的位置变为(pWrite+L),如图 5。
图 5收到长度为L的数据的环形缓冲
分析上述环形缓冲的使用过程,收到数据后的情况可以简单归纳为两种:pWrite>pRead,接收但未处理的数据位于pRead到pWrite之间的缓冲区;pWrite<pRead,这时候,数据位于pRead到pLastWrite和pRingbuf到pWrite之间。这两种情况分别对应图6、图 7。
首先分析图6。此时,pRead是一个包的起始位置,如果L1足够一个包头长度,就获取该包的长度信息,记为L。假如L1>L,就说明一个数据包接收完成,根据包类型处理包,然后修改pRead指针,指向下一个包的起始位置(pRead+L)。这时候仍然类似于之前的状态,于是解包继续,直到L1不足一个包的长度,或者不足包头长度。这时退出解包过程,等待后续的数据到来。
图 6有未处理数据的环形缓冲(1)
图 7有未处理数据的环形缓冲(2)
图 8稍微复杂。首先按照上述过程处理L1部分。存在一种情况,经过若干个包处理之后,L1不足一个包,或者不足一个包头。如果这时(L1+L2)足够一个包的长度,就需要继续处理。另外申请一个最大包长度的内存区pTemp,把L1部分和L2的一部分复制到pTemp,然后执行解包过程。
经过上述解包之后,pRead就转向pRingBuf到pWrite之间的某个位置,从而回归情况图 6,继续按照图 6部分执行解包。