6.1 使用scikit-learn构建模型

  scikit-learn(简称sklearn)库整合了多种机器学习算法,可以帮助使用者在数据分析过程中快速建立模型,且模型接口统一,使用起来非常方便。同时,sklearn拥有优秀的官方文档,知识点详尽,内容丰富,是入门学习sklearn的最佳内容。

  开源机器学习库:https://scikit-learn.org/stable/index.html   开源机器学习库
在这里插入图片描述
涵盖分类、回归、聚类、降维、模型选择、数据预处理六大模块
在这里插入图片描述

6.1.1 使用sklearn转换器处理数据

  sklearn提供了model_selection模型选择模块、preprocessing数据预处理模块与decomoisition特征分解模块。通过这三个模块能够实现数据的预处理与模型构建前的数据标准化、二值化、数据集的分割、交叉验证和PCA降维等工作。

datasets模块常用数据集的加载函数与解释如下表所示:
波士顿房价、鸢尾花、红酒数据集
在这里插入图片描述
  使用sklearn进行数据预处理会用到sklearn提供的统一接口——转换器(Transformer)。
  加载后的数据集可以视为一个字典,几乎所有的sklearn数据集均可以使用data,target,feature_names,DESCR分别获取数据集的数据,标签,特征名称和描述信息。

from sklearn.datasets import load_boston  # 波士顿房价数据集
from sklearn.datasets import load_breast_cancer  # 癌症数据集
# cancer = load_breast_cancer()  # 读取数据集
# print("长度: ", len(cancer))
# print("类型: ", type(cancer))
boston = load_boston()  # 读取数据集
print("长度: ", len(boston))
# print(boston)
print('data:\n', boston['data'])  # 数据
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值