2016山东ACM省赛B 3561Fibonacci

本文介绍了一个算法问题,即如何判断一个整数是否可以表示为若干个不相邻的斐波那契数之和,并提供了一段C++代码实现。通过预计算斐波那契数列并逆向减法的方式进行判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci

Problem Description

Fibonacci numbers are well-known as follow:

 

Now given an integer N, please find out whether N can be represented as the sum of several Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers.

Input
Multiple test cases, the first line is an integer T (T<=10000), indicating the number of test cases.

Each test case is a line with an integer N (1<=N<=10^9).

Output
One line per case. If the answer don’t exist, output “-1” (without quotes). Otherwise, your answer should be formatted as “N=f1+f2+…+fn”. N indicates the given number and f1, f2, … , fn indicating the Fibonacci numbers in ascending order. If there are multiple ways, you can output any of them.

Example Input
4
5
6
7
100
Example Output
5=5
6=1+5
7=2+5
100=3+8+89

#include <iostream>
using namespace std;
int f[45]={1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170};
//斐波那契数列打表到10^9,递归求的话可能会超时
int a[50];//存放加数

int main()
{
    int t,n,k;
    cin>>t;
    while(t--)
    {
        cin>>n;
        k=n;
        int flag=0;
        for(int i=45;i>=1;i--)
        {
            if(f[i]<=n)
            {
                a[flag++]=f[i];
                n=n-f[i];
            }
        }
        if(n==0)
        {
            cout<<k<<"=";
            for(int i=flag-1;i>=1;i--)
            {
                if(i==flag-1)cout<<a[i];  //第一个
                else cout<<"+"<<a[i];
            }
            cout<<endl;
        }
        else cout<<"-1"<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值