把代码贴出来把,省的自己不小心啥时候删掉。。。
#-*-coding:UTF-8-*-
'''
Created on 2014年9月25日
@author: Ayumi Phoenix
'''
import numpy as np
class HMM:
def __init__(self, Ann, Bnm, pi1n):
self.A = np.array(Ann)
self.B = np.array(Bnm)
self.pi = np.array(pi1n)
self.N = self.A.shape[0]
self.M = self.B.shape[1]
def printhmm(self):
print "=================================================="
print "HMM content: N =",self.N,",M =",self.M
for i in range(self.N):
if i==0:
print "hmm.A ",self.A[i,:]," hmm.B ",self.B[i,:]
else:
print " ",self.A[i,:]," ",self.B[i,:]
print "hmm.pi",self.pi
print "=================================================="
# 函数名称:Forward *功能:前向算法估计参数 *参数:phmm:指向HMM的指针
# T:观察值序列的长度 O:观察值序列
# alpha:运算中用到的临时数组 pprob:返回值,所要求的概率
def Forward(self,T,O,alpha,pprob):
# 1. Initialization 初始化
for i in range(self.N):
alpha[0,i] = self.pi[i]*self.B[i,O[0]]
# 2. Induction 递归
for t in range(T-1):
for j in range(self.N):
sum = 0.0
for i in range(self.N):
sum += alpha[t,i]*self.A[i,j]
alpha[t+1,j] =sum*self.B[j,O[t+1]]
# 3. Termination 终止
sum = 0.0
for i in range(self.N):
sum += alpha[T-1,i]
pprob[0] *= sum
# 带修正的前向算法
def ForwardWithScale(self,T,O,alpha,scale,pprob):
scale[0] = 0.0
# 1. Initialization
for i in range(self.N):
alpha[0,i] = self.pi[i]*self.B[i,O[0]]
scale[0] += alpha[0,i]
for i in range(self.N):
alpha[0,i] /= scale[0]
# 2. Induction
for t in range(T-1):
scale[t+1] = 0.0
for j in range(self.N):
sum = 0.0
for i in range(self.N):
sum += alpha[t,i]*self.A[i,j]
alpha[t+1,j] = sum * self.B[j,O[t+1]]
scale[t+1] += alpha[t+1,j]
for j in range(self.N):
alpha[t+1,j] /= scale[t+1]
# 3. Termination
for t in range(T):
pprob[0] += np.log(scale[t])
# 函数名称:Backward * 功能:后向算法估计参数 * 参数:phmm:指向HMM的指针
# T:观察值序列的长度 O:观察值序列
# beta:运算中用到的临时数组 pprob:返回值,所要求的概率
def Backword(self,T,O,beta,pprob):
# 1. Intialization
for i in range(self.N):
beta[T-1,i] = 1.0
# 2. Induction
for t in range(T-2,-1,-1):
for i in range(self.N):
sum = 0.0
for j in range(self.N):
sum += self.A[i,j]*self.B[j,O[t+1]]*beta[t+1,j]
beta[t,i] = sum
# 3. Termination
pprob[0] = 0.0
for i in range(self.N):
pprob[0] += self.pi[i]*self.B[i,O[0]]*beta[0,i]
# 带修正的后向算法
def BackwardWithScale(self,T,O,beta,scale):
# 1. Intialization
for i in range(self.N):
beta[T-1,i] = 1.0
# 2. Induction
for t in range(T-2,-1,-1):
for i in range(self.N):
sum = 0.0
for j in range(self.N):
sum += self.A[i,j]*self.B[j,O[t+1]]*beta[t+1,j]
beta[t,i] = sum / scale[t+1]
# Viterbi算法
# 输入:A,B,pi,O 输出P(O|lambda)最大时Poptimal的路径I
def viterbi(self,O):
T = len(O)
# 初始化
delta = np.zeros((T,self.N),np.float)
phi = np.zeros((T,self.N),np.float)
I = np.zeros(T)
for i in range(self.N):
delta[0,i] = self.pi[i]*self.B[i,O[0]]
phi[0,i] = 0
# 递推
for t in range(1,T):
for i in range(self.N):
delta[t,i] = self.B[i,O[t]]*np.array([delta[t-1,j]*self.A[j,i] for j in range(self.N)]).max()
phi[t,i] = np.array([delta[t-1,j]*self.A[j,i] for j in range(self.N)]).argmax()
# 终结
prob = delta[T-1,:].max()
I[T-1] = delta[T-1,:].argmax()
# 状态序列求取
for t in range(T-2,-1,-1):
I[t] = phi[t+1,I[t+1]]
return I,prob
# 计算gamma : 时刻t时马尔可夫链处于状态Si的概率
def ComputeGamma(self, T, alpha, beta, gamma):
for t in range(T):
denominator = 0.0
for j in range(self.N):
gamma[t,j] = alpha[t,j]*beta[t,j]
denominator += gamma[t,j]
for i in range(self.N):
gamma[t,i] = gamma[t,i]/denominator
# 计算sai(i,j) 为给定训练序列O和模型lambda时:
# 时刻t是马尔可夫链处于Si状态,二时刻t+1处于Sj状态的概率
def ComputeXi(self,T,O,alpha,beta,gamma,xi):
for t in range(T-1):
sum = 0.0
for i in range(self.N):
for j in range(self.N):
xi[t,i,j] = alpha[t,i]*beta[t+1,j]*self.A[i,j]*self.B[j,O[t+1]]
sum += xi[t,i,j]
for i in range(self.N):
for j in range(self.N):
xi[t,i,j] /= sum
# Baum-Welch算法
# 输入 L个观察序列O,初始模型:HMM={A,B,pi,N,M}
def BaumWelch(self,L,T,O,alpha,beta,gamma):
print "BaumWelch"
DELTA = 0.01 ; round = 0 ; flag = 1 ; probf = [0.0]
delta = 0.0 ; deltaprev = 0.0 ; probprev = 0.0 ; ratio = 0.0 ; deltaprev = 10e-70
xi = np.zeros((T,self.N,self.N))
pi = np.zeros((T),np.float)
denominatorA = np.zeros((self.N),np.float)
denominatorB = np.zeros((self.N),np.float)
numeratorA = np.zeros((self.N,self.N),np.float)
numeratorB = np.zeros((self.N,self.M),np.float)
scale = np.zeros((T),np.float)
while True :
probf[0] = 0
# E - step
for l in range(L):
self.ForwardWithScale(T,O[l],alpha,scale,probf)
self.BackwardWithScale(T,O[l],beta,scale)
self.ComputeGamma(T,alpha,beta,gamma)
self.ComputeXi(T,O[l],alpha,beta,gamma,xi)
for i in range(self.N):
pi[i] += gamma[0,i]
for t in range(T-1):
denominatorA[i] += gamma[t,i]
denominatorB[i] += gamma[t,i]
denominatorB[i] += gamma[T-1,i]
for j in range(self.N):
for t in range(T-1):
numeratorA[i,j] += xi[t,i,j]
for k in range(self.M):
for t in range(T):
if O[l][t] == k:
numeratorB[i,k] += gamma[t,i]
# M - step
# 重估状态转移矩阵 和 观察概率矩阵
for i in range(self.N):
self.pi[i] = 0.001/self.N + 0.999*pi[i]/L
for j in range(self.N):
self.A[i,j] = 0.001/self.N + 0.999*numeratorA[i,j]/denominatorA[i]
numeratorA[i,j] = 0.0
for k in range(self.M):
self.B[i,k] = 0.001/self.M + 0.999*numeratorB[i,k]/denominatorB[i]
numeratorB[i,k] = 0.0
pi[i]=denominatorA[i]=denominatorB[i]=0.0;
if flag == 1:
flag = 0
probprev = probf[0]
ratio = 1
continue
delta = probf[0] - probprev
ratio = delta / deltaprev
probprev = probf[0]
deltaprev = delta
round += 1
if ratio <= DELTA :
print "num iteration ",round
break
if __name__ == "__main__":
print "python my HMM"
A = [[0.8125,0.1875],[0.2,0.8]]
B = [[0.875,0.125],[0.25,0.75]]
pi = [0.5,0.5]
hmm = HMM(A,B,pi)
O = [[1,0,0,1,1,0,0,0,0],
[1,1,0,1,0,0,1,1,0],
[0,0,1,1,0,0,1,1,1]]
L = len(O)
T = len(O[0]) # T等于最长序列的长度就好了
alpha = np.zeros((T,hmm.N),np.float)
beta = np.zeros((T,hmm.N),np.float)
gamma = np.zeros((T,hmm.N),np.float)
hmm.BaumWelch(L,T,O,alpha,beta,gamma)
hmm.printhmm()
由于为了自己理解方便,直接翻译公式。。。其实可以用numpy的函数写的简单点的O(∩_∩)O