McDonald 2005 https://github.com/dorcoh/DependencyParser
Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations https://github.com/Horse-G/NLP_neural_network
Recurrent Neural Network Grammars https://github.com/kmccurdy/rnng-notebook
Dynamic Oracle https://github.com/dpressel/arcs-py
Simple graph-based dependency parser with perceptron learning algorithm. https://github.com/daandouwe/perceptron-dependency-parser
Deep Biaffine Attention for Neural Dependency Parsing
https://github.com/bamtercelboo/PyTorch_Biaffine_Dependency_Parsing
本文探讨了深度学习在自然语言处理中的依赖性解析任务上的应用,包括使用双向LSTM特征表示的简单准确的依赖性解析、递归神经网络语法、动态oracle策略以及基于PyTorch的深双仿射注意力神经依赖性解析模型。这些方法提高了依赖性解析的效率和准确性。
1228

被折叠的 条评论
为什么被折叠?



