Python陷阱,10人面试,9个人中招!

无论是应聘Python web开发,爬虫工程师,或是数据分析,还是自动化运维,都涉及到一些基础的知识!我挑了一些Python的基础面试题,看看你能不能的答上来,也许面试的同学用的着!

**问题1:**请问如何修改以下Python代码,使得下面的代码调用类A的show方法?

答:这道题的考点是类继承,只要通过__class__ 方法指定类对象就可以了。补充的代码如下:

**问题2:**请问如何修改以下Python代码,使得代码能够运行?

答:此题考察得是方法对象,为了能让对象实例能被直接调用,需要实现 call 方法,补充代码如下:

**问题3:**下面这段代码的输出是什么?

i

答:

此题考察的是new和init的用法,使用 new 方法,可以决定返回那个对象,也就是创建对象之前调用的,这个常见于于设计模式的单例、工厂模式。init 是创建对象是调用的。

** 问题4:**下面这段代码输出什么?

答:

此题考察的是列表和字典的生成。

**问题5:**下面这段代码输出什么?

答:

此题考察全局变量和局部变量。num 不是个全局变量,所以每个函数都得到了自己的 num 拷贝,如果你想修改 num ,则必须用 global 关键字声明。比如下面这样

**问题6:**如何使用一行代码交换两个变量值?

答:

**问题7:**如何添加代码,使得没有定义的方法都调用mydefault方法?

答:

此题的考的是Python的默认方法, 只有当没有定义的方法调用时,才会调用方法 getattr。当 fn1 方法传入参数时,我们可以给 mydefault 方法增加一个 *args 不定参数来兼容。

如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的。交流经验。从基础的python脚本到web开发、爬虫、django、数据挖掘等,零基础到项目实战的资料都有整理。送给每一位python的小伙伴!分享一些学习的方法和需要注意的小细节,点击加入我们的 python学习者聚集地

**问题8:**一个包里有三个模块,mod1.py , mod2.py , mod3.py ,但使用 from demopack import * 导入模块时,如何保证只有 mod1 、 mod3 被导入了。

答:在包中增加 init.py 文件,并在文件中增加:

**问题9:**写一个函数,接收整数参数 n ,返回一个函数,函数返回n和参数的积。

答:

**问题10:**请问下面的代码有什么隐患?(Python2中)

image

答:由于变量str是个不可变对象,每次迭代,python都会生成新的str对象来存储新的字符串,num越大,创建的str对象越多,内存消耗越大。

本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值