很多人未必学过数据挖掘,甚至可能没有听过这四个字,但实际已经早就开始在进行数据挖掘。譬如说股民。炒股就是股市中的数据挖掘,分析K线图和股市后市走势、考察公司的指标体系推测股票的未来价值。所做的这些事就是把从各种地方收集的信息,也就是“数据”加以整理分析,挖掘出和你关心的对象的目标关系。
一个优秀的数据分析师,除了要掌握基本的统计学、数据库、数据分析方法、思维、数据分析工具技能之外,还需要掌握一些数据挖掘的思想,帮助我们挖掘出有价值的数据,这也是数据分析专家和一般数据分析师的差距之一。
数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。
市面上很多关于数据挖掘算法的介绍深奥难懂,今天给大家分享一份 阿里大佬总结的python常用数据挖掘算法。覆盖全面,全程干货,逻辑清晰,案例丰富,代码清晰可复制。是学习数据挖掘算法的不二选择。建议收藏学习!
一、数据挖掘与机器学习基础
- 第一章 机器学习的统计基础
- 第二章 探索性数据分析( EDA)