python绘图中的四个绘图技巧

在可视化数据时,通常需要在单个图形中绘制多个图形。 例如,如果您想从不同的角度可视化相同的变量(例如,数字变量的并排直方图和箱线图),则多个图形很有用。 在这篇文章中,我分享了绘制多个图形的 4 个简单但实用的技巧。

数据集:package:

让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:

import seaborn as sns # v0.11.2  
import matplotlib.pyplot as plt # v3.4.2  
sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load\_dataset('tips')  
df.head()

:round_pushpin: 技巧1: plt.subplots()

绘制多个子图的一种简单方法是使用 plt.subplots() 。 这是绘制 2 个并排子图的示例语法:

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))  
sns.histplot(data=
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值