**轻量化微调 (Parameter Efficient Fine-Tuning,PEFT)😗*一种优化策略,用于减少模型的计算资源需求,同时保持或提高模型性能。由于大模型的参数太大,即使是fine-tuning通常也需要很大的算力和数据,因此提出在保持原有大模型参数不变的前提下,注入少量参数,通过只训练该部分参数的方式来实现微调目的。
在机器学习和深度学习领域,训练、预训练、微调和轻量化微调是几个重要的概念,它们通常用于模型的构建和优化过程中。下面是这些术语的基本解释:
训练 (Training):
训练是机器学习模型学习数据特征和模式的过程。在这个过程中,模型通过大量的数据输入来调整其参数,以便能够准确地预测或分类新的数据。训练通常涉及到损失函数的最小化,这是衡量模型预测与实际结果差异的指标。
预训练 (Pre-training):
预训练是一种在大规模数据集上训练模型的方法,以便学习通用的特征表示。预训练模型通常在特定任务上表现良好,因为它们已经学习了数据的一般性特征。例如,在自然语言处理中,预训练的BERT模型可以捕捉到语言的复杂结构和语义信息。
微调 (Fine-tuning):
微调是在预训练模型的基础上进行的进一步训练,目的是使模型适应特定的任务或数据集。在微调过程中,通常会冻结预训练模型的一部分参数,只训练模型的顶层或特定层,以便模型能够针对新任务进行调整。微调可以显著提高模型在特定任务上的性能。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。