过去一年里,关于AI发展,出现了两种观点的分化:
- 一边是“AI增长放缓、模型到顶、预训练无用论”
- 另一边则是隔三差五就来一次“AI大周”:GPT-5.1、Gemini 3、Grok 4.1。

而Transformer作者之一、现任OpenAI研究科学家的Łukasz Kaiser最近接受采访,给出了第一视角的解答。
信息量极大,包括AI的底层范式转变、GPT-5.1的命名规则、未来AI的发展趋势……以及Transformer诞生背后的二三事。
AI不是变慢了,而是换代了。
GPT-5.1不是简单的小版本迭代,OpenAI内部版本命名规则有所变化。
多模态推理将会成为下一个突破点。
AI不会让人类完全失去工作。
家用机器人是继ChatGPT后最可见的AI革命。
下面一起来康康详细内容:
一、AI发展没有放缓,而是平稳增长
过去一年里,有关“模型进展变缓”的声音层出不穷,但Łukasz认为这种看法是错误的。

他给出的解释也很直白:
从内部视角看,AI的能力增长是一条非常平滑的指数曲线。
这类似于摩尔定律,几十年来摩尔定律始终有效,甚至在GPU的推动下还在加速,归根结底也是因为它历经了数代技术的迭代。
因此,AI从外部看,趋势是平稳的;而从内部看,其进步也离不开新技术、计算机能力的提升和工程优化的共同作用。
至于为什么会有人觉得“变慢了”,原因无它:AI的底层范式,已经悄悄从预训练转向推理模型。
这也是继Transformer诞生后的又一次关键转折。
如果把技术发展的过程描述为一条S型曲线*(起步→快速增长→平稳期)*,那么预训练就处于S曲线的上升后期,而推理模型仍处于初期。
不过这并不意味着预训练的Scaling Laws就失效了,它仍在发挥作用,只是和新的推理范式相比,需要投入更多的资金。

所以出于经济上的考量,业内人士开始普遍将工作重心转向更小也更便宜,但质量相同的模型,所以这也是导致外界认为预训练已经停止的原因之一。
那么回到推理模型上,由于该范式还处于新兴阶段,进步速度会相当之快。
以ChatGPT为例,GPT-3.5会直接基于训练数据记忆给出答案,而不会借助任何外部工具和推理,反观现在最新的ChatGPT会主动浏览网站、进行推理分析,再给出准确答案。
对于普通用户来说,如果不仔细对比,可能会觉得二者差异不大,但实际上这背后是性能质的飞跃。
又比如说Codex,程序员的工作方式已经在近几个月里转变为**“Codex先处理,然后人工微调”**的模式,这种变化其实相当之彻底,但如果不是专业从事编程工作,自然不会留意到这种根本性变革。

所以总的来说,这一切的变化都发生得太快,以至于让人们还未曾察觉到其中的变化。
而推理模型的本质其实也与基础大模型类似,只是在给出最终答案前,会优先进行思考,也就是所谓的思维链。
在思考过程中,模型被允许使用工具,例如浏览网页,以给出更准确的答案。其推理过程也会被视为模型的一部分并接受训练。
相比于传统的深度神经网络梯度下降训练,推理模型则更多使用的是强化学习。
具体来说,强化学习会通过奖励机制推动模型获取更好的答案,也需要研究人员提供更细致的数据准备,以完成强化学习的参数调整。
然后通过强化学习,模型就能学会对自身错误的纠正。
后续行业也会继续转向更复杂的强化学习,例如借助一个大模型来判断答案的正确性或偏好度,或者融入更多的人类偏好。

总之,未来强化学习的应用范围会更加广泛,不仅仅适用于特定领域,还能处理更多通用数据,比如说多模态推理,虽然最近Gemini已经能够在推理过程中生成图像,但整体来说还处于刚刚起步的阶段,相信在强化学习的帮助下会有进一步的提升。
二、GPT-5.1绝非表面上的小版本更新
关于最近发布的GPT-5.1,Łukasz也释出了更多细节。
GPT-5.1看起来只是小版本更迭,实际从内部来讲,是一个巨大的稳定性迭代。
首先回到最初的GPT-4到GPT-5,简单来说,得益于强化学习和合成数据的应用,GPT-5的推理能力明显提升了。
而到GPT-5.1的改进,则更多集中在后训练阶段,比如增加安全性、减少幻觉,以及添加了如书呆子、专业等多种风格选择。

版本的命名方式也不再与技术细节挂钩,转而以用户体验为导向,比如GPT-5是基础能力较强的模型,GPT-5.1是能力更优的版本,Mini是更小、更快、更廉价但性能稍弱的模型,推理模型则专注于复杂任务。
这种命名方式的转变也为OpenAI内部带来了更多灵活性,现在强化学习、预训练、幻灯片优化等多个项目并行工作,然后通过蒸馏技术就能将多项目成果整合到一个模型中。
这大大缩短了模型迭代时间,可以更好地满足用户体验需求,所以GPT-5.1看似是小版本更新,实则背后是OpenAI基于用户对其能力和目标预期做出的策略调整。
不过坦白地讲,GPT-5.1在部分能力上仍然存在短板。

比如Łukasz用自己5岁的女儿举了个例子——
GPT-5.1能够游刃有余地解决奥林匹克竞赛题,但在面对小学一年级的数奇偶数题目上却错误百出。
该题目内容是,图中有两组点,中间有一个共享点,问总点数是奇数还是偶数。
5岁的孩子能够在10秒内就算出答案*(因为共享点的存在导致总点数为奇数)*,但无论GPT-5.1还是Gemini 3都会自动忽略这个共享点,误判为偶数。
这主要还是因为模型缺乏足够的多模态能力,也未能将一个问题的推理经验迁移到相似场景中,所以后续他们将会在训练中进一步强化多模态推理和上下文推理迁移能力。
三、从谷歌Transformer走向OpenAI
而作为Transformer的作者之一,Łukasz也在访谈中补充了很多诞生细节。

Łukasz自己原先是一名专注于理论计算机科学的学者,高中时就对数学和计算机充满兴趣,并在德国获得了理论计算机科学与数学博士学位。
他一直对“思维是如何运作的”、“智能的本质是什么”诸如此类的问题充满好奇,也曾在法国获得终身教职,从事逻辑和编程研究。
直到深度学习兴起,他加入了谷歌。
先是成为了Ray Kurzweil团队的一员,后转至Google Brain,开始与Ilya Sutskever等人合作。
在开发Transformer的过程中,Łukasz主要负责编码和系统工作,参与TensorFlow框架的开发。

不过有趣的是,据他回忆,Transformer论文的八位共同作者从未在同一个物理房间中共同出现过。
而虽然他们彼此之间素未谋面,但他们通过不同角度共同构建了这个模型:
有人专注于注意力机制本身,有人研究如何通过前馈网络存储知识,还有人复杂解决工程实现问题,比如他自己。
从现在的角度看,Transformer毫无疑问是当今AI架构的里程碑,但在当时,很多人对用同一个模型处理多个任务的想法并不理解,他们普遍认为不同任务就应该分别训练不同的专有模型。
而他们八个人坚信自己的选择,后来的事实也证实了他们的想法是正确的。

关于之所以离开谷歌,转投OpenAI,其中一个原因还是因为llya。
llya在谷歌时期就是Łukasz的直系领导,在创办OpenAI后也屡次邀请他加入。刚好这时,Łukasz也无法适应Google Brain的团队规模扩大以及远程工作氛围,于是一拍即合,来到了OpenAI。
OpenAI也没有让他失望,这里没有严格的组织架构,都是根据项目自发组队,也会根据项目进展灵活调整,直到项目成熟才会逐步扩大团队。
当然不同项目之间也会存在资源竞争,毕竟OpenAI内部GPU资源有限。
从技术层面看,预训练目前消耗的GPU资源最多,其次是强化学习和视频模型,资源分配在很大程度上还是由技术需求决定。
所以竞争不可避免,Łukasz本人也不例外。

四、下一次突破来自多模态推理+具身智能
最后,Łukasz聊了聊他眼中的AI未来。
AI会改变工作,但不会让工作消失。
因为从产品层面上看,即使AI自动化了绝大部分任务,但人类专家的需求仍然存在。
以翻译行业为例,其实Transformer论文最初的应用场景就是翻译,现在的模型也能准确翻译西班牙语、法语等语言,但对于报纸广告乃至ChatGPT UI界面,仍然需要人类译者进行二次审核。

这本质上是信任问题,即使模型能力再强,对于一些高风险、高关注度的场景,还是会倾向于依赖人类专家经验。
只是说,对于另外一些基础工作,可替代性会变高,后续也会出现相应的工作内容变化,但归根结底不会让人类无事可做。
Łukasz还预计,家用机器人可能会成为“下一次更为直观的AI革命”。

机器人技术的进展,取决于多模态能力和通用强化学习、通用推理的进步。一旦这些领域取得突破,机器人技术必将迎来爆发式增长。
目前已经有很多硅谷公司在相继推出智能手遥操作等硬件产品,硬件基础也将迅速成熟,届时将协同多模态和物理世界推理能力,实现家用机器人的能力跃迁。
这将会比ChatGPT更直观、更易感知。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

3737

被折叠的 条评论
为什么被折叠?



