在大模型的应用中,如何实现知识的动态更新与私有化定制化,是许多企业亟需解决的挑战。大模型的知识源自预训练,因此一旦完成训练,它所掌握的知识就无法再更新。如何让大模型不断学习新知识,是行业中的一大难题。幸运的是,**RAG(检索增强生成)**技术的出现,为这一问题提供了完美解决方案。通过将外部私有知识库与大模型相结合,RAG能够实时增强模型的知识,而无需重新训练整个大模型。本文将详细解析RAG技术的原理、常用实现方式、数据库选型及其优缺点,帮助企业选择合适的数据库,实现大模型的私有化定制化部署。
一、为什么需要RAG?
RAG技术能够将外部知识库实时嵌入大模型,解决了多个大模型应用中的痛点。下面,我们将探讨RAG在实际应用中的重要优势。
1. 大模型的知识更新问题
大模型的预训练过程完成后,其知识便是固定的。随着时间推移,新的信息和知识不断涌现,如何保持模型的“时效性”是一个重大挑战。通过RAG,企业可以随时更新其私有数据库,从而使得模型能够吸收最新的行业动态和知识。

- 生成结果的不可解释性问题
大模型的“涌现”能力虽然惊人,但它的结果有时缺乏可解释性。例如,模型可能会给出貌似正确但实际错误的答案,这种问题在一些场合可能带来较大风险。RAG技术通过从已知知识库中获取具体答案,确保大模型的输出结果更加可靠和确定,避免出现“幻觉”问题。

3. 数据安全问题
对于公有大模型,虽然其在性能上表现优秀,但其对外部数据的依赖性也带来了隐私泄露的风险。通过RAG技术,模型的输出完全依赖于私有知识库,这样不仅能确保数据的个性化,还能大幅提升数据的安全性。

二、RAG的数据库选择
RAG技术不仅改变了大模型的工作方式,还推动了数据库技术的发展。为了实现高效的检索和数据增强,选择合适的数据库至关重要。以下是几种常用的数据库类型,以及它们的应用场景:
1. 向量数据库
向量数据库是RAG系统中最常用的数据库类型,尤其适用于存储和检索非结构化数据,如文本、图片、音频等。它通过向量嵌入将数据转换为高维空间中的点,并基于相似度进行快速检索。
- 代表产品:LanceDB、Chroma、Pinecone
- 适用场景:电商推荐、语义搜索、聊天记录分析等
- 优势:支持高效相似性检索、多模态兼容、横向扩展
2. 图数据库
图数据库采用节点与边的关系存储方式,特别适合处理复杂的关系数据。它能够很好地支持跨实体关系查询,在RAG系统中发挥重要作用。

- 代表产品:Neo4j、Nebula Graph
- 适用场景:社交网络分析、供应链管理、复杂逻辑推理等
- 优势:支持多跳推理、动态权重计算、图可视化分析
3. 知识图谱
知识图谱结合了图数据库与向量检索功能,能够提供高效的知识推理和语义理解。在RAG架构中,知识图谱主要解决“为什么”的问题,它通过推理提供更加智能的答案。

- 代表产品:AWS Neptune、Stardog、Apache Jena
- 适用场景:法律咨询、动态知识扩展、行业标准更新等
- 优势:支持增量更新、推理路径可解释、语义理解精准
4. 混合架构数据库
混合架构数据库结合了向量数据库和图数据库的优势,能够更好地处理多种类型的数据。通过多源数据的融合,它能够提高RAG系统的检索精度和结果的准确性。

- 代表产品:Elasticsearch + Neo4j、Milvus + TigerGraph
- 适用场景:智能客服、金融分析、科研文献分析等
- 优势:灵活的检索策略、精准的数据匹配、多源结果交叉验证
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

8325

被折叠的 条评论
为什么被折叠?



