2024版最新AI大模型知识点大梳理,大模型到底是什么?

AI大模型是什么

AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。

AI大模型的定义具体可以根据参数规模来分类。根据OpenAI的分类方法,可以将AI模型分为以下几类:

小型模型:≤ 1百万个参数

中型模型:1百万 – 1亿个参数

大型模型:1亿 – 10亿个参数

极大型模型:≥ 10亿个参数

其中大型模型和极大型模型可以被视为AI大模型。总的来说,“大模型”应该是基于具有超级大规模的、甚至可以称之为“超参数”的模型,需要大量的计算资源、更强的计算能力以及更优秀的算法优化方法进行训练和优化。

AI大模型发展历程

2022年11月30日由总部位于旧金山的OpenAI推出ChatGPT3.5。

2023年2月, Google推出类似于ChatGPT的对话人工智能服务Bard, 基于其开发的对话编程语言模型(LaMDA)。但有很多限制,文字处理仅支持美式英语。

2023年3月12日,OpenAI发布多模态模型GPT-4,并计划推出图像输入功能。

2023年2月, 百度也于确认类ChatGPT聊天机器人项目名字确定为"文心一言", 英文名ERNIE Bot。

2023年2月, 复旦大学自然语言处理实验室邱锡鹏教授团队推出对话式大型语言模型MOSS。

2023年3月14日,由清华技术成果转化的公司智谱AI基于GLM-130B千亿基座模型的ChatGLM开启邀请制内测,同时开源了中英双语对话模型ChatGLM-6B,支持在单张消费级显卡上进行推理使用。

2023年4月7日,阿里云研发语言模型“通义千问”开始邀请用户测试体验。现阶段该模型主要定向邀请企业用户进行体验测试,获得邀请码用户可通过官网参与体验

2023年5月6日,科大讯飞发布认知大模型“星火”。科大讯飞董事长刘庆峰表示,当前讯飞星火认知大模型已经在文本生成、知识问答、数学能力三大能力上已超ChatGPT,10月底将整体赶超ChatGPT。

2023年3月,由前OpenAI员工共同创立的初创公司Anthropic推出了大型语言模型Claude。它可以被指示执行一系列任务,包括搜索文档,总结,写作和编码,以及回答有关特定主题的问题。

2023年3月, 华为宣布即将推出盘古大模型。

AI大模型的底层原理

AI大模型(如深度学习模型)的原理是基于神经网络和大量数据的训练。这些模型通过模拟人脑的神经元结构,对输入数据进行多层抽象和处理,从而实现对复杂任务的学习和预测。

AI大模型的训练主要分为:数据预处理、模型构建、模型训练、模型评估四个步骤,更加详细的介绍如下所示:

1.数据预处理:首先,需要对原始数据进行清洗、整理和标注,以便为模型提供合适的输入。这一阶段可能包括去除噪声、填充缺失值、归一化等操作。

2.构建神经网络:接下来,根据任务需求,设计并搭建一个神经网络。神经网络通常由多个层次组成,每个层次包含若干个神经元。神经元之间通过权重连接,用于表示输入数据与输出数据之间的关系。

3.前向传播:将经过预处理的数据输入到神经网络中,按照权重计算得出各层神经元的输出。这个过程称为前向传播。

4.激活函数:在神经网络的每一层之后,通常会使用激活函数(如ReLU、Sigmoid或Tanh等)对输出进行非线性变换,以增加模型的表达能力。

5.损失函数:为了衡量模型预测结果与真实目标之间的差距,需要定义一个损失函数。损失函数会计算预测误差,并将其作为优化目标。常见的损失函数有均方误差(MSE)、交叉熵损失(Cross-Entropy Loss)等。

6.优化算法:根据损失函数,选择合适的优化算法(如梯度下降、随机梯度下降、Adam等)来更新神经网络中的权重和偏置,以减小损失函数的值。这个过程称为反向传播。

7.训练与验证:重复执行上述步骤,直到模型在训练集上达到满意的性能。为了防止过拟合,还需要在验证集上评估模型的泛化能力。如果发现模型在验证集上的表现不佳,可以调整网络结构、超参数或训练策略等。

8.部署与使用:当模型在训练集和验证集上表现良好时,可以将数据模型进行部署和使用。

AI大模型解决的问题

1.自然语言处理:AI大模型,例如 GPT-3 和 BERT,大幅提升了自然语言处理任务的性能,如翻译、问答、分词、文本生成等领域。AI大模型通过学习海量的语料库和上下文,让计算机更加准确地理解和处理自然语言。

2.计算机视觉:AI大模型,例如 ResNet 和 EfficientNet,推动了计算机视觉任务的发展,包括目标检测、图像分类、语义分割等领域。AI大模型通过学习大量的图像数据和构建更深更复杂的神经网络,使计算机能够对图像进行更加准确的识别和分析。

3.人脸识别:大模型,例如Facenet和 DeepFace,提高了人脸识别的准确性和鲁棒性,大幅度提升了人脸识别技术在安防、金融、医疗等领域的应用。

4.声音识别:AI大模型,例如Wav2Vec和Transformer,使语音识别技术取得了更高的准确性,大幅提高了语音识别技术在交互式应用和智能家居领域的应用。

大模型的优点和不足

优点:

1.更准确:AI大模型有更多的参数,能够处理更复杂的信息和更深入的上下文,提高了精度和准确性。

2.更智能:AI大模型能够模拟人类的思维和学习模式,通过大量的训练数据,从而提高人工智能的智能性。

3.更具通用性:AI大模型能够自适应不同的工作和环境,可以适应各种不同的自然语言、视觉和声音数据。

4.更加高效:AI大模型通过并行计算和分布式训练,大大提高了计算效率,能够在短时间内处理大量的数据。

不足:

1.计算资源问题:AI大模型需要更多的计算资源,如多台GPU和分布式计算等,高昂的成本阻碍了普及和应用。

2.数据集问题:AI大模型需要大量的标注数据,以便训练和优化模型。但实际场景中的数据通常是不完整、不一致和缺乏标注的。

3.可解释性问题:AI大模型对于预测结果的解释通常比较困难,难以解释其判断的依据和原因, 使得大模型的使用和应用存在风险和误判的情况。

4.环境依赖:AI大模型对于使用语言、环境等存在更高的依赖性,需要针对特定场景进行定制和使用。

5.OpenAI承认ChatGPT"有时会写出看似合理但不正确或荒谬的答案",这在大型语言模型中很常见,称作人工智能幻觉。其奖励模型围绕人类监督而设计,可能导致过度优化,从而影响性能,即古德哈特定律。

影响

AI大模型具有极高的性能和准确性,将在很多方面带来积极的影响,例如在自然语言处理、计算机视觉、医疗诊断、交通控制等领域。但与此同时,AI大模型也可能会带来以下一些社会影响:

1.经济影响:AI大模型可能带来巨额投资,需要高昂的计算资源和优秀的人才团队。这可能会进一步加剧数字鸿沟,导致巨型科技公司的垄断,和对于小型企业和开发者的不利影响。同时AI大模型可以通过自动化和智能化的方式提高生产效率,减少人力成本; AI大模型可以帮助人们更好地理解复杂的问题,发现新的解决方案和商业模式;

2.就业影响:AI大模型在某些领域可以实现人机合作或自动化,减少人力资源的需求。这可能会对现有的行业和工作造成影响,需要更新技能或转移职业方向。AI大模型可能会改变社会结构,导致某些职业的消失或新兴职业的出现。

3.隐私保护:用于训练大模型的数据往往包含大量的个人隐私数据,如医疗数据、银行账户等,保护这些数据的安全和隐私变得尤为重要。因此需要适当的数据隐私和安全保护机制。

4.偏差问题:AI大模型的决策过程往往非常复杂,使得其决策过程难以解释,容易产生预测偏差。这可能导致偏见和歧视,需要制定合适的规范和标准来规范AI的开发和应用。

5.引发伦理问题:AI大模型可能会对人类的价值观和道德观产生影响,引发一些伦理问题。例如,在自动驾驶汽车上出现道德困境时(如是否应该让一名行人通过), AI大模型可能会给出不同的答案,这可能会引起争议。

个人观点

AI大模型百花齐放百家争鸣的时代已经是现实了,不管你愿不愿意承认,AI时代已经到来了。与其在AI抢占就业机会的危机中患得患失,不如快点接受这个新技术,将AI引入自己的工作中,通过AI来提升自己的生产力和创造力。打不过就加入,不丢人。顺应时代还有一线生机,顽固不化故步自封只能被时代的洪流碾碎。

无论你是刚入行的产品新手,还是经验丰富的资深产品经理,在AI时代下都需要不断拓展自己的技能边界,才能在未来的竞争中立于不败之地。

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

2.大模型的优势

大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。

虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。

因此,从来没有一种技术能够像大模型这样同时深入到这么多领域并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。

3、大模型学习建议

在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。

同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。

接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
img
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:

  • 先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
    学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。
  • 在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
  • 不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

关于大模型技术储备

学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。

AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起

1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程

第2章 大语言模型基础

2.1 Transformer 模型

  • 嵌入表示层
  • 注意力层
  • 前馈层
  • 残差连接与层归一化
  • 编码器和解码器结构

2.2 生成式预训练语言模型 GPT

  • 无监督预训练
  • 有监督下游任务微调
  • 基于 HuggingFace 的预训练语言模型实践

2.3 大语言模型结构

  • LLaMA 的模型结构
  • 注意力机制优化

    因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第3章 大语言模型基础

3.1 数据来源

  • 通用数据
  • 专业数据

3.2 数据处理

  • 低质过滤
  • 冗余去除
  • 隐私消除
  • 词元切分

3.3 数据影响分析

  • 数据规模影响
  • 数据质量影响
  • 数据多样性影响

3.4 开源数据集合

  • Pile
  • ROOTS
  • RefinedWeb
  • SlimPajama


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第4章 分布式训练

4.1 分布式训练概述
4.2 分布式训练并行策略

  • 数据并行
  • 模型并行
  • 混合并行
  • 计算设备内存优化

4.3 分布式训练的集群架构

  • 高性能计算集群硬件组成
  • 参数服务器架构
  • 去中心化架构

4.4 DeepSpeed 实践

  • 基础概念
  • LLaMA 分布式训练实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

第5章 有监督微调

5.1 提示学习和语境学习

  • 提示学习
  • 语境学习

5.2 高效模型微调

  • LoRA
  • LoRA 的变体

5.3 模型上下文窗口扩展

  • 具有外推能力的位置编码
  • 插值法

5.4 指令数据构建

  • 手动构建指令
  • 自动生成指令
  • 开源指令数据集

5.5 Deepspeed-Chat SFT 实践

  • 代码结构
  • 数据预处理
  • 自定义模型
  • 模型训练
  • 模型推
第6章 强化学习

6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践

第7章 大语言模型应用

7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化

第8章 大语言模型评估

8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

总结

坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。

记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。

最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。

祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值