机器学习领域是巨大的,为了学习不迷路,可以从以下列表帮助学习。它概述深度学习的一些学习细节。
阶段1:入门级
入门级能够掌握以下技能:
-
能够处理小型数据集
-
理解经典机器学习技术的关键概念
-
理解经典网络DNN、CNN和RNN
数据处理
在入门级使用的数据集很小,可以放入主内存中。只需几行代码即可应用此类操作。在此阶段数据包括Audio、Image、Time-series和Text等类型。
经典机器学习
在深入研究深度学习之前,学习基本机器学习技术是一个不错的选择,其包括回归、聚类、SVM和树模型。
网络
掌握常见的网络层,以及相应的神经网络;GAN、AE、VAE、DNN、CNN、RNN 等等。在入门阶段,可以优先掌握DNN、CNN和RNN。
理论
没有神经网络就没有深度学习,没有(数学)理论就没有神经网络。可以通过了解数学符号来开始学习,可以从矩阵、线性代数和概率论开始你的学习。
阶段2:进阶水平
进阶和入门级之间没有真正的分界,进阶水平能够处理更大的数据集,能够使用高级网络处理自定义项模型:
-
处理更大的数据集
-
能够自定义模型完成任务
-
网络模型精度变得更好
数据处理
能够处理几GB的数据集,需要自定义数据扩增方法和数据处理函数。
自己完成任务
能够根据具体任务完成代码的开发,而不是参考MNIST的教程完成编码。
自定义网络
处理自定义项目时,如何处理数据数据?如何定义自己的网络层?
模型训练
掌握迁移学习的思路,学会使用预训练权重完成新任务。并掌握冻结部分网络层的方法。
深度学习理论
掌握深度学习模型的正向传播和反向传播,特别是链式求导法则。掌握激活函数和目标函数的作用,能够选择合适的激活函数和目标函数。
阶段3:熟练水平
与进阶相比你需要掌握更加的数据集处理方法,并掌握加速模型训练的方法:
-
大规模数据的处理和存储
-
网络模型的调参
-
无监督学习和强化学习
数据处理
需要掌握几百GB数据集的处理,学会Linux的操作。此阶段可能接触到多模态任务。
无监督项目
开始尝试无监督网络模型的搭建,如自编码器和GAN模型,能够掌握模型原理。
模型训练
掌握模型调参的方法和常见的日志和可视化工具,如TensorBoard的使用。掌握学习率的调节方法,如余弦退火。掌握多机和混合精度训练。
阶段4:专家级
掌握前沿的学术模型的发展,知道自己的兴趣是什么,并能提出新的模型:
-
学会使用JAX或DALI处理数据
-
熟悉图神经网络和Transformer模型
关于Python学习指南
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方优快云官方认证二维码或者点击链接免费领取【保证100%免费
】
点击免费领取《优快云大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取
