问题:
给定一个十进制正整数N,写下从1开始,到N的所有整数,然后数一下其中出现的所有“1”的个数。
例如:
N= 2,写下1,2。这样只出现了1个“1”。
N= 12,我们会写下1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12。这样,1的个数是5。
一、暴力求解,不被推荐
class Solution
{
public:
int NumberOf1Between1AndN( unsigned int n )
{
int number = 0;
for ( int i = 0; i <= n; i++ )
{
number += NumberOf1( i );
}
return number;
}
int NumberOf1( unsigned int n )
{
int number = 0;
while ( n )
{
if ( n % 10 == 1 )
number++;
n = n / 10;
}
return number;
}
};
二、从数字规律着手解决
但是这种思路比较难以理解,推荐第三种。
class Solution
{
public:
int NumberOf1Between1AndN( int n )
{
if ( n <= 0 )
return 0;
char strN[50];
sprintf( strN, "%d", n );
return NumberOf1( strN );
}
int NumberOf1( const char *strN )
{
if ( !strN || *strN < '0' || *strN > '9' || *strN == '\0' )
return 0;
int first = *strN - '0';
unsigned int length = static_cast<unsigned int>( strlen( strN ) );
if ( length == 1 && first == 0 )
return 0;
if ( length == 1 && first > 0 )
return 1;
int numFirstDigit = 0;
if ( first > 1 )
numFirstDigit = PowerBase10( length-1 );
else if ( first == 1 )
numFirstDigit = atoi( strN+1 ) + 1;
int numOtherDigits = first * ( length-1 ) * PowerBase10( length-2 ); //有些疑惑
int numRecursive = NumberOf1( strN+1 );
return numFirstDigit+numOtherDigits+numRecursive;
}
int PowerBase10( unsigned int n )
{
int result = 1;
for ( unsigned int i = 0; i < n; ++i )
result *= 10;
return result;
}
};
三、从数字规律着手解决
这篇讲述的比较清楚
4. 解题思路
int NumberOf1Between1AndN_Solution(int n)
{
if(n < 1)
return 0;
int sum = 0;
int num = n;
int base = 1;
while(num)
{
int weight = num%10;
num /= 10;
sum += num*base;
if(weight == 1)
sum += n%base + 1;
else if(weight > 1)
sum += base;
base *= 10;
}
return sum;
}
代码时间复杂度为O(logN)