【ICCV2021】COTR: Correspondence Transformer for Matching Across Images

本文介绍了一种新颖的深度学习框架COTR,利用Transformer处理图像间对应问题,能同时处理稀疏和密集映射,通过多尺度推理提供高精度匹配。COTR在多个任务和数据集上表现出色,无需为特定任务重新训练,强调了可复现性和数据、代码的公开。

COTR: Correspondence Transformer for Matching Across Images

链接:COTR: Correspondence Transformer for Matching Across Images | IEEE Conference Publication | IEEE Xplore

Abstract

We propose a novel framework for finding correspondences in images based on a deep neural network that, given two images and a query point in one of them, finds its correspondence in the other. By doing so, one has the option to query only the points of interest and retrieve sparse correspondences, or to query all points in an image and obtain dense mappings. Importantly, in order to capture both local and global priors, and to let our model relate between image regions using the most relevant among said priors, we realize our network using a transformer. At inference time, we apply our correspondenc

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值