本文仅考虑同质图setting下的节点表征模型。
对于异质图场景,可以参考我写的另一篇博文:异质图神经网络(持续更新ing…)
- node2vec
- ChebNet Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- GCN
- GraphSAGE
- (2018 ICLR) GAT Graph Attention Networks
图注意力网络 - (2018 ICLR) G2G Re37:读论文 G2G Graph2Gauss Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Rank
- (2018 ICML) JK-Net Representation Learning on Graphs with Jumping Knowledge Networks
- GIN How Powerful are Graph Neural Networks?
- GGNN
- (2019 ICML) SGC Simplifying Graph Convolutional Networks
- (2019 ICLR) APPNP Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank
- (2019 KDD) PGE Re3:读论文 PGE A Representation Learning Framework for Property Graphs
- (2020 KDD) DAGNN Re46:读论文 DAGNN Towards Deeper Graph Neural Networks
- (2020 ICLR) CS-GNN Re2: 读论文 CS-GNN Measuring and Improving the Use of Graph Information in Graph Neural Networks
- (2021 ICLR) C&S Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
- GAE
- MotifNet: a motif-based Graph Convolutional Network for directed graphs
- SIGN: Scalable Inception Graph Neural Networks
- SSGC或S 2 ^2 2GC Simple Spectral Graph Convolution
- GBP Scalable Graph Neural Networks via Bidirectional Propagation
- 无监督inductive节点表征模型(具体的还没看懂,所以不知道应该怎么分类啊啥的……)G2G Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
Re37:读论文 G2G Graph2Gauss Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Rank
本文专注于同质图的节点表征模型,涵盖了如node2vec、GCN、GAT等经典方法,并提及了无监督归纳学习在图深度学习中的应用,包括G2G、APPNP和DAGNN等。此外,还讨论了如何改进图信息的利用和网络的深度,如CS-GNN的研究。
1791






