Arithmetic Slices动态规划算法详解

文章详细介绍了如何使用动态规划解决寻找给定数组中等差子序列的问题,包括问题定义、示例、解题思路及算法实现。通过动态规划记录以当前元素为结尾的等差子序列数量,最终得到总等差子序列个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题详见: Arithmetic Slices

题目让我们求解一个给定的数组中等差子序列的个数。题目描述如下:
      A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
      For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

      The following sequence is not arithmetic.

1, 1, 2, 5, 7

      A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.
      A slice (P, Q) of array A is called arithmetic if the sequence:
      A[P], A[p + 1], …, A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

      The function should return the number of arithmetic slices in the array A.

Example:

A = [1, 2, 3, 4]
return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

解题思路:

      由于题目中等差子序列的长度至少为3,所以如果所给数组长度小于3那么结果即为0,否则就进行动态规划。动态规划的思路是记录以当前遍历到的数组元素为子序列尾部元素的等差子序列的个数 dp[i] ,而 dp[i]=dp[i1]+1 。这样遍历完以后将 dp[2] dp[n1] 加起来即为所求答案。整个算法复杂度为 O(n) 。具体算法如下:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        int n = A.size();
        if (n < 3) return 0;
        vector<int> dp(n, 0); 
        if (A[2]-A[1] == A[1]-A[0]) dp[2] = 1; 
        int result = dp[2];
        for (int i = 3; i < n; ++i) {
            if (A[i]-A[i-1] == A[i-1]-A[i-2])   dp[i] = dp[i-1] + 1;
            result += dp[i]; 
        }
        return result;
    }
};

其提交运行结果如下:
Arithmetic Slices

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值