Pytorch实用教程:nn.LSTM内部是如何实现的

这篇教程介绍了PyTorch中的nn.LSTM模块,包括基本介绍、LSTM的工作原理、源码解析。nn.LSTM的参数如输入和隐藏层维度、堆叠层数、偏置使用等被详细阐述。文章深入探讨了LSTM的遗忘门、输入门和输出门机制,并提供了查看源码的途径。核心源码简化版展示了LSTM的forward方法和计算逻辑,强调了底层实现的优化用于提升运算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在 PyTorch 中, nn.LSTM 是实现长短期记忆(Long Short-Term Memory, LSTM)网络的一个类,广泛用于处理和预测 序列数据的任务。LSTM 是一种特殊类型的 循环神经网络(RNN),能够学习 长期依赖信息,这一点在普通的 RNN 中是很难做到的。

nn.LSTM 的基本介绍

nn.LSTM 对象在 PyTorch 中负责创建一个 LSTM 层。它的参数主要包括:

  • input_size:输入特征的维度。
  • hidden_size:LSTM 隐藏层的维度。
  • num_layers:堆叠的 LSTM 层的数量(默认为1层)。
  • bias:是否使用偏置(默认为True)。
  • batch_first:输入和输出的维度顺序是否为 (batch, seq, feature)(默认为False,即 (seq, batch, feature))。
  • dropout:如果大于0,则除了最后一层外,其他层后会添加一个dropout层。
  • bidirectional:是否使用双向LSTM(默认为False)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值