基于小波变换的图像分解与重建(附带MATLAB代码)

135 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用MATLAB信号处理工具箱实现基于小波变换的图像分解与重建,通过设置小波函数和分解层数,提取近似系数和细节系数,进而进行图像重构。这种方法有助于在不同尺度上分析图像,提供了理解和处理图像的多分辨率视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于小波变换的图像分解与重建(附带MATLAB代码)

对于图像处理和分析的任务,小波变换在实践中被广泛应用。小波变换提供了一种多分辨率的分析方法,可以同时捕捉到图像的局部和全局特征。本文将介绍如何使用MATLAB实现基于小波变换的图像分解与重建,并提供相应的源代码。

首先,我们需要安装MATLAB的信号处理工具箱,该工具箱提供了一些用于小波变换的函数和工具。

代码如下所示:

% 读取图像
image = imread('input_image.jpg');

% 将图像转换为灰度图像(如果是彩色图像)
gray_image = rgb2gray(image)
f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号原始信号比较') f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号原始信号比较')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值