在算子函数中,返回null
// return actionRDD.mapToPair(new PairFunction<Row, String, Row>() {
//
// private static final long serialVersionUID = 1L;
//
// @Override
// public Tuple2<String, Row> call(Row row) throws Exception {
// return new Tuple2<String, Row>("-999", RowFactory.createRow("-999"));
// }
//
// });
大家可以看到,在有些算子函数里面,是需要我们有一个返回值的。但是,有时候,我们可能对某些值,就是不想有什么返回值。我们如果直接返回NULL的话,那么可以不幸的告诉大家,是不行的,会报错的。
Scala.Math(NULL),异常
如果碰到你的确是对于某些值,不想要有返回值的话,有一个解决的办法:
1、在返回的时候,返回一些特殊的值,不要返回null,比如“-999”
2、在通过算子获取到了一个RDD之后,可以对这个RDD执行filter操作,进行数据过滤。filter内,可以对数据进行判定,如果是-999,那么就返回false,给过滤掉就可以了。
3、大家不要忘了,之前咱们讲过的那个算子调优里面的coalesce算子,在filter之后,可以使用coalesce算子压缩一下RDD的partition的数量,让各个partition的数据比较紧凑一些。也能提升一些性能。
错误的持久化使用方式:
usersRDD,想要对这个RDD做一个cache,希望能够在后面多次使用这个RDD的时候,不用反复重新计算RDD;可以直接使用通过各个节点上的executor的BlockManager管理的内存 / 磁盘上的数据,避免重新反复计算RDD。
usersRDD.cache()
usersRDD.count()
usersRDD.take()
上面这种方式,不要说会不会生效了,实际上是会报错的。会报什么错误呢?会报一大堆file not found的错误。
正确的持久化使用方式:
usersRDD
usersRDD = usersRDD.cache()
val cachedUsersRDD = usersRDD.cache()
之后再去使用usersRDD,或者cachedUsersRDD,就可以了。就不会报错了。所以说,这个是咱们的持久化的正确的使用方式。
持久化,大多数时候,都是会正常工作的。但是就怕,有些时候,会出现意外。
比如说,缓存在内存中的数据,可能莫名其妙就丢失掉了。
或者说,存储在磁盘文件中的数据,莫名其妙就没了,文件被误删了。
出现上述情况的时候,接下来,如果要对这个RDD执行某些操作,可能会发现RDD的某个partition找不到了。
对消失的partition重新计算,计算完以后再缓存和使用。
有些时候,计算某个RDD,可能是极其耗时的。可能RDD之前有大量的父RDD。那么如果你要重新计算一个partition,可能要重新计算之前所有的父RDD对应的partition。
这种情况下,就可以选择对这个RDD进行checkpoint,以防万一。进行checkpoint,就是说,会将RDD的数据,持久化一份到容错的文件系统上(比如hdfs)。
在对这个RDD进行计算的时候,如果发现它的缓存数据不见了。优先就是先找一下有没有checkpoint数据(到hdfs上面去找)。如果有的话,就使用checkpoint数据了。不至于说是去重新计算。
checkpoint,其实就是可以作为是cache的一个备胎。如果cache失效了,checkpoint就可以上来使用了。
checkpoint有利有弊,利在于,提高了spark作业的可靠性,一旦发生问题,还是很可靠的,不用重新计算大量的rdd;但是弊在于,进行checkpoint操作的时候,也就是将rdd数据写入hdfs中的时候,还是会消耗性能的。
checkpoint,用性能换可靠性。
checkpoint原理:
1、在代码中,用SparkContext,设置一个checkpoint目录,可以是一个容错文件系统的目录,比如hdfs;
2、在代码中,对需要进行checkpoint的rdd,执行RDD.checkpoint();
3、RDDCheckpointData(spark内部的API),接管你的RDD,会标记为marked for checkpoint,准备进行checkpoint
4、你的job运行完之后,会调用一个finalRDD.doCheckpoint()方法,会顺着rdd lineage,回溯扫描,发现有标记为待checkpoint的rdd,就会进行二次标记,inProgressCheckpoint,正在接受checkpoint操作
5、job执行完之后,就会启动一个内部的新job,去将标记为inProgressCheckpoint的rdd的数据,都写入hdfs文件中。(备注,如果rdd之前cache过,会直接从缓存中获取数据,写入hdfs中;如果没有cache过,那么就会重新计算一遍这个rdd,再checkpoint)
6、将checkpoint过的rdd之前的依赖rdd,改成一个CheckpointRDD*,强制改变你的rdd的lineage。后面如果rdd的cache数据获取失败,直接会通过它的上游CheckpointRDD,去容错的文件系统,比如hdfs,中,获取checkpoint的数据。