Zipline( 牛客2021年度训练联盟热身训练赛第三场 )

本文介绍了一种计算滑索电缆长度的方法,通过给定的两个垂直杆的距离、高度及安全距离,确定电缆长度的上下限,确保乘客在滑行过程中始终保持安全的高度。

链接:https://ac.nowcoder.com/acm/contest/16303/M
来源:牛客网

题目描述

A zipline is a very fun and fast method of travel. It uses a very strong steel cable, connected to two poles. A rider (which could be a person or some cargo) attaches to a pulley which travels on the cable. Starting from a high point on the cable, gravity pulls the rider along the cable.

Your friend has started a company which designs and installs ziplines, both for fun and for utility. However, there’s one key problem: determining how long the cable should be between the two connection points. The cable must be long enough to reach between the two poles, but short enough that the rider is guaranteed to stay a safe distance above the ground. Help your friend determine these bounds on the length.

The cable connects to two vertical poles that are ww meters apart, at heights gg and hh meters, respectively. You may assume that the cable is inelastic and has negligible weight compared to the rider, so that there is no sag or slack in the cable. That is, at all times the cable forms two straight line segments connecting the rider to the two poles, with the sum of the segments lengths equal to the total length of the cable. The lowest part of the rider hangs rr meters below the cable; therefore the cable must stay at least rr meters above the ground at all times during the ride. The ground is flat between the two poles. Please refer to the diagram in Figure M.1 for more information.
在这里插入图片描述

Figure M.1: A zipline, annotated with the four variables used to describe it.

输入描述:

The input starts with a line containing an integer nn, where 1≤n≤1000. The next nn lines each describe a zipline configuration with four integers: ww, gg, hh, and rr. These correspond to the variables described above. The limits on their values are: 1 000 0001≤w,g,h≤1000000, and 1≤r≤min(g,h).

输出描述:

For each zipline, print a line of output with two lengths (in meters): the minimum and maximum length the cable can be while obeying the above constraints. Both lengths should have an absolute error of at most 10^−6 .

示例1
输入

2
1000 100 100 20
100 20 30 2

输出

1000.00000000 1012.71911209
100.49875621 110.07270325

题意:

求Cable的最小和最大长度

题上其实已经描述了什么时候为最长?什么时候为最短?
下面这个英语句子就是:
determining how long the cable should be between the two connection points. The cable must be long enough to reach between the two poles, but short enough that the rider is guaranteed to stay a safe distance above the ground.

思路:
那么如何直白的表达这个题并可以成功的做对呢?
直接上图!
在这里插入图片描述
此时为最短 红色线即为所求
在这里插入图片描述
此时为最长,绿色线即为所求

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
typedef long long ll;
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		double  w,g,h,r,tt;
		scanf("%lf %lf %lf %lf",&w,&g,&h,&r);
		if(g<h)
		swap(g,h);
		double rr=g-h;
		double ww=sqrt(w*w+rr*rr);
		double wq=sqrt(w*w+(g+h-2*r)*(g+h-2*r));
		printf("%.8lf %.8lf\n",ww,wq);
	}
	return 0;
}
内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值