排序算法总结
JS 十大排序算法
冒泡排序
作为最简单的排序算法之一,冒泡排序感觉就像Abandon在单词书里出现的感觉一样,每次都在第一页第一位,冒泡排序还有一种优化算法,就是立一个flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。。。
通过相邻元素的比较和交换,使得每一趟循环都能找到未有序数组的最大值或最小值。
最好:O(n)
,只需要冒泡一次数组就有序了。
最坏:O(n²)
平均:O(n²)
冒泡排序动图演示:
单向冒泡
function bubbleSort(nums) {
for(let i=0, len=nums.length; i<len-1; i++) {
// 如果一轮比较中没有需要交换的数据,则说明数组已经有序。主要是对[5,1,2,3,4]之类的数组进行优化
let mark = true;
for(let j=0; j<len-i-1; j++) {
if(nums[j] > nums[j+1]) {
[nums[j], nums[j+1]] = [nums[j+1], nums[j]];
mark = false;
}
}
if(mark) return;
}
}
双向冒泡
普通的冒泡排序在一趟循环中只能找出一个最大值或最小值,双向冒泡则是多一轮循环既找出最大值也找出最小值。
function bubbleSort_twoWays(nums) {
let low = 0;
let high = nums.length - 1;
while(low < high) {
let mark = true;
// 找到最大值放到右边
for(let i=low; i<high; i++) {
if(nums[i] > nums[i+1]) {
[nums[i], nums[i+1]] = [nums[i+1], nums[i]];
mark = false;
}
}
high--;
// 找到最小值放到左边
for(let j=high; j>low; j--) {
if(nums[j] < nums[j-1]) {
[nums[j], nums[j-1]] = [nums[j-1], nums[j]];
mark = false;
}
}
low++;
if(mark) return;
}
}
选择排序
选择排序须知:
在时间复杂度上表现最稳定的排序算法之一,因为无论什么数据进去都是O(n²)的时间复杂度。。。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
和冒泡排序相似,区别在于选择排序是将每一个元素和它后面的元素进行比较和交换。
最好:O(n²)
最坏:O(n²)
平均:O(n²)
选择排序动图演示:
代码演示:
function selectSort(nums) {
for(let i=0, len=nums.length; i<len; i++) {
for(let j=i+1; j<len; j++) {
if(nums[i] > nums[j]) {
[nums[i], nums[j]] = [nums[j], nums[i]];
}
}
}
}
插入排序
以第一个元素作为有序数组,其后的元素通过在这个已有序的数组中找到合适的位置并插入。
插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。
最好:O(n)
,原数组已经是升序的。
最坏:O(n²)
平均:O(n²)
插入排序动图演示:
代码演示:
function insertSort(nums) {
for(let i=1, len=nums.length; i<len; i++) {
let temp = nums[i];
let j = i;
while(j >= 0 && temp < nums[j-1]) {
nums[j] = nums[j-1];
j--;
}
nums[j] = temp;
}
}
快速排序
选择一个元素作为基数(通常是第一个元素),把比基数小的元素放到它左边,比基数大的元素放到它右边(相当于二分),再不断递归基数左右两边的序列。
最好:O(n * logn)
,所有数均匀分布在基数的两边,此时的递归就是不断地二分左右序列。
最坏:O(n²)
,所有数都分布在基数的一边,此时划分左右序列就相当于是插入排序。
平均:O(n * logn)
快速排序动图演示:
归并排序
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第2种方法)
- 自下而上的迭代
- 递归将数组分为两个序列,有序合并这两个序列。
最好:O(n * logn)
最坏:O(n * logn)
平均:O(n * logn)
归并排序动图演示:
桶排序
取 n 个桶,根据数组的最大值和最小值确认每个桶存放的数的区间,将数组元素插入到相应的桶里,最后再合并各个桶。
最好:O(n)
,每个数都在分布在一个桶里,这样就不用将数插入排序到桶里了(类似于计数排序以空间换时间)。
最坏:O(n²)
,所有的数都分布在一个桶里。
平均:O(n + k)
,k表示桶的个数。
function bucketSort(nums) {
// 桶的个数,只要是正数即可
let num = 5;
let max = Math.max(...nums);
let min = Math.min(...nums);
// 计算每个桶存放的数值范围,至少为1,
let range = Math.ceil((max - min) / num) || 1;
// 创建二维数组,第一维表示第几个桶,第二维表示该桶里存放的数
let arr = Array.from(Array(num)).map(() => Array().fill(0));
nums.forEach(val => {
// 计算元素应该分布在哪个桶
let index = parseInt((val - min) / range);
// 防止index越界,例如当[5,1,1,2,0,0]时index会出现5
index = index >= num ? num - 1 : index;
let temp = arr[index];
// 插入排序,将元素有序插入到桶中
let j = temp.length - 1;
while(j >= 0 && val < temp[j]) {
temp[j+1] = temp[j];
j--;
}
temp[j+1] = val;
})
// 修改回原数组
let res = [].concat.apply([], arr);
nums.forEach((val, i) => {
nums[i] = res[i];
})
}
基数排序
使用十个桶 0-9,把每个数从低位到高位根据位数放到相应的桶里,以此循环最大值的位数次。但只能排列正整数,因为遇到负号和小数点无法进行比较。
最好:O(n * k)
,k表示最大值的位数。
最坏:O(n * k)
平均:O(n * k)
基数排序动图演示:
代码演示:
function radixSort(nums) {
// 计算位数
function getDigits(n) {
let sum = 0;
while(n) {
sum++;
n = parseInt(n / 10);
}
return sum;
}
// 第一维表示位数即0-9,第二维表示里面存放的值
let arr = Array.from(Array(10)).map(() => Array());
let max = Math.max(...nums);
let maxDigits = getDigits(max);
for(let i=0, len=nums.length; i<len; i++) {
// 用0把每一个数都填充成相同的位数
nums[i] = (nums[i] + '').padStart(maxDigits, 0);
// 先根据个位数把每一个数放到相应的桶里
let temp = nums[i][nums[i].length-1];
arr[temp].push(nums[i]);
}
// 循环判断每个位数
for(let i=maxDigits-2; i>=0; i--) {
// 循环每一个桶
for(let j=0; j<=9; j++) {
let temp = arr[j]
let len = temp.length;
// 根据当前的位数i把桶里的数放到相应的桶里
while(len--) {
let str = temp[0];
temp.shift();
arr[str[i]].push(str);
}
}
}
// 修改回原数组
let res = [].concat.apply([], arr);
nums.forEach((val, index) => {
nums[index] = +res[index];
})
}
计数排序
以数组元素值为键,出现次数为值存进一个临时数组,最后再遍历这个临时数组还原回原数组。因为 JavaScript 的数组下标是以字符串形式存储的,所以计数排序可以用来排列负数,但不可以排列小数。
最好:O(n + k)
,k是最大值和最小值的差。
最坏:O(n + k)
平均:O(n + k)
计数排序动图演示:
代码演示:
function countingSort(nums) {
let arr = [];
let max = Math.max(...nums);
let min = Math.min(...nums);
// 装桶
for(let i=0, len=nums.length; i<len; i++) {
let temp = nums[i];
arr[temp] = arr[temp] + 1 || 1;
}
let index = 0;
// 还原原数组
for(let i=min; i<=max; i++) {
while(arr[i] > 0) {
nums[index++] = i;
arr[i]--;
}
}
}