- 博客(300)
- 收藏
- 关注
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现2
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:08:33
991
2
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现3
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:07:47
879
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现1
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:07:03
670
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现4
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:55
737
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现5
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:52
940
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现6
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:50
1017
2
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现7
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:47
975
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现8
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:45
648
2
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现9
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:43
773
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现10
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:41
734
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现11
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:38
708
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现12
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:36
619
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现13
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:33
543
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现14
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:30
674
1
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现15
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 11:06:27
713
4
原创 LruCache在美团DSP系统中的应用演进5
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:26
765
2
原创 LruCache在美团DSP系统中的应用演进1
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:22
629
1
原创 LruCache在美团DSP系统中的应用演进2
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:19
966
2
原创 LruCache在美团DSP系统中的应用演进3
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:17
534
2
原创 LruCache在美团DSP系统中的应用演进4
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:14
693
2
原创 LruCache在美团DSP系统中的应用演进6
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:09
642
1
原创 LruCache在美团DSP系统中的应用演进7
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:06
912
2
原创 LruCache在美团DSP系统中的应用演进8
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:04
773
2
原创 LruCache在美团DSP系统中的应用演进9
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:54:01
751
原创 LruCache在美团DSP系统中的应用演进10
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:58
990
原创 LruCache在美团DSP系统中的应用演进11
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:55
765
1
原创 LruCache在美团DSP系统中的应用演进12
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:51
823
1
原创 LruCache在美团DSP系统中的应用演进13
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:47
544
1
原创 LruCache在美团DSP系统中的应用演进14
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:43
930
3
原创 LruCache在美团DSP系统中的应用演进15
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 08:53:39
909
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现1
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:37
734
3
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现2
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:34
606
1
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现3
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:32
598
3
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现4
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:30
941
4
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现5
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:28
626
2
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现6
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:26
581
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现7
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:24
844
2
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现8
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:23
580
1
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现9
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:20
834
2
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现10
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-优快云博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-优快云博客。
2024-12-30 00:50:18
728
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人