python数学建模第六章

6.1

import networkx as nx
import pylab as plt

L1=[(1,2),(1,3),(1,4),(2,3),(2,6),(3,4),(4,5),(5,6)]
G1=nx.Graph(); G1.add_nodes_from(range(1,7))
G1.add_edges_from(L1); pos1=nx.shell_layout(G1)
plt.subplot(131)
nx.draw(G1,pos1,with_labels=True,font_weight='bold')

L2=[(1,2,7),(1,3,3),(1,4,12),(2,3,1),(2,6,1),(3,4,8),(4,5,9),(5,6,3)]
G2=nx.Graph(); G2.add_nodes_from(range(1,7))
G2.add_weighted_edges_from(L2); pos2=nx.shell_layout(G2)
plt.subplot(132)
nx.draw(G2,pos2,with_labels=True,font_weight='bold')
w2=nx.get_edge_attributes(G2,'weight')
nx.draw_networkx_edge_labels(G2,pos2,edge_labels=w2)

L3=[(1,3,3),(2,1,7),(2,3,1),(3,4,8),(4,1,12),(5,4,9),(5,6,3),(6,2,1)]
G3=nx.DiGraph(); G3.add_nodes_from(range(1,7))
G3.add_weighted_edges_from(L3); pos3=nx.shell_layout(G3)
plt.subplot(133)
nx.draw(G3,pos3,with_labels=True,font_weight='bold')
w3=nx.get_edge_attributes(G3,'weight')
nx.draw_networkx_edge_labels(G3,pos3,edge_labels=w3)
plt.show()

6.2

edges = [  
    ("Pe", "T", 13),  
    ("Pe", "N", 68),  
    ("Pe", "M", 78),  
    ("Pe", "L", 51),  
    ("Pe", "Pa", 51),  
    ("T", "N", 68),  
    ("T", "M", 70),  
    ("T", "L", 60),  
    ("T", "Pa", 61),  
    ("N", "M", 21),  
    ("N", "L", 35),  
    ("N", "Pa",36),  
    ("M", "L", 56),  
    ("M", "Pa", 57),  
    ("L", "Pa", 21),  
]
class UnionFind:  
    def __init__(self, n):  
        self.parent = list(range(n))  
        self.rank = [0] * n  
  
    def find(self, u):  
        if self.parent[u] != u:  
            self.parent[u] = self.find(self.parent[u])  
        return self.parent[u]  
  
    def union(self, u, v):  
        root_u = self.find(u)  
        root_v = self.find(v)  
        if root_u != root_v:  
            if self.rank[root_u] > self.rank[root_v]:  
                self.parent[root_v] = root_u  
            elif self.rank[root_u] < self.rank[root_v]:  
                self.parent[root_u] = root_v  
            else:  
                self.parent[root_v] = root_u  
                self.rank[root_u] += 1  
  
def kruskal(edges):  
    edges.sort(key=lambda edge: edge[2]) 
    uf = UnionFind(len(set(city for edge in edges for city in edge[:2])))  
    mst = []  
      
    for u, v, weight in edges:  
        if uf.find(u) != uf.find(v):  
            uf.union(u, v)  
            mst.append((u, v, weight))  
      
    return mst  
 
city_map = {  
    "Pe": 0, "T": 1, "N": 2, "M": 3, "L": 4, "Pa": 5  
}  
 
edges_with_indices = [(city_map[u], city_map[v], weight) for u, v, weight in edges]  
 
mst_edges = [(list(city_map.keys())[u], list(city_map.keys())[v], weight) for u, v, weight in kruskal(edges_with_indices)]  
  
print("最小生成树的边:")  
for u, v, weight in mst_edges:  
    print(f"{u} - {v}: {weight}")

6.3

import heapq  
  
def prim(graph, start):  
    num_nodes = len(graph)  
    visited = [False] * num_nodes  
    min_heap = [(0, start, -1)]   
    mst_cost = 0  
    mst_edges = []  
  
    while min_heap:  
        weight, u, parent = heapq.heappop(min_heap)  
        if visited[u]:  
            continue  
        visited[u] = True  
        mst_cost += weight  
        if parent != -1:  
            mst_edges.append((parent, u, weight))  
  
        for v in range(num_nodes):  
            if not visited[v] and graph[u][v] != 0:  
                heapq.heappush(min_heap, (graph[u][v], v, u))  
  
    return mst_cost, mst_edges  
    
graph = [  
    [0,20,0,0,15,0],  
    [20,0,20,60,25,0],  
    [0,20,0,30,18,0],  
    [0,60,30,0,35,10],  
    [0,0,0,10,15,0]  
]  
  
mst_cost, mst_edges = prim(graph, 0)  
print("Prim's MST Cost:", mst_cost)  
print("Prim's MST Edges:", mst_edges)

6.4

initial_costs = [2.5, 2.6, 2.8, 3.1] 
salvage_values = [2.0, 1.6, 1.3, 1.1]  
maintenance_costs = [0.3, 0.8, 1.5, 2.0]  
 
dp = [[float('inf')] * 2 for _ in range(4)] 
dp[0][1] = initial_costs[0] + maintenance_costs[0]  
  
for i in range(1, 4):  
    dp[i][1] = min(dp[i-1][1] + maintenance_costs[i],  
                   initial_costs[i] + maintenance_costs[i])  
 
    if i > 0:  
        dp[i][0] = dp[i-1][1] + salvage_values[i-1] 
  
min_cost = min(dp[3][1],  
               min(dp[i][0] for i in range(3)))  
  
 
print(f"最优更新策略下的4年内最小总费用为:{min_cost}万元")  

6.5

import numpy as np  
   
distances = np.array([  
    [0, 2, 7, np.inf, np.inf, np.inf],  
    [2, 0, 4, 6, 8, np.inf],           
    [7, 4, 0, 1, 3, np.inf],          
    [np.inf, 6, 1, 0, 1, 6],           
    [np.inf, 8, 3, 1, 0, 3],          
    [np.inf, np.inf, np.inf, 6, 3, 0]  
], dtype=float)  
 
students = np.array([50, 40, 60, 20, 70, 90])  
  
hospital_distances_sum = np.zeros(6)  
for i in range(6):   
    connected_distances = distances[i, :i+1].copy()  
    connected_distances = connected_distances[connected_distances != np.inf]  
    hospital_distances_sum[i] = np.sum(connected_distances)  
hospital_location = np.argmin(hospital_distances_sum)  
print(f"医院应该建在村庄 {chr(65 + hospital_location)} 处,使得最远村庄的人到医院看病所走的路最短。")  
  
school_total_distances = np.zeros(6)  
for i in range(6):  
   
    weighted_distances = 0  
    for j in range(6):  
        if distances[j, i] != np.inf:  
            weighted_distances += students[j] * distances[j, i]  
    school_total_distances[i] = weighted_distances  
  
school_location = np.argmin(school_total_distances)  
print(f"小学应该建在村庄 {chr(65 + school_location)} 处,使得所有学生上学走的总路程最短。")

6.6

import numpy as np  
  
matches = np.array([  
    [0, 1, 0, 1, 1, 1],  # 1队  
    [0, 0, 0, 1, 1, 1],  # 2队  
    [1, 1, 0, 1, 0, 0],  # 3队  
    [0, 0, 0, 0, 1, 1],  # 4队  
    [0, 0, 1, 0, 0, 1],  # 5队  
    [0, 0, 1, 0, 0, 0]   # 6队  
], dtype=int)  
  
n = matches.shape[0]  
closure = matches.copy()  
for k in range(n):  
    for i in range(n):  
        for j in range(n):  
            closure[i, j] = closure[i, j] or (closure[i, k] and closure[k, j])  
  
strength = closure.sum(axis=1)  
   
ranking = np.argsort(-strength) 
  
for i, rank in enumerate(ranking):  
    print(f"{chr(65 + rank)}队 排名 {i + 1}")
    
    
import numpy as np  
from scipy.sparse import csr_matrix  
  
edges = [  
    (0, 1), (0, 3), (0, 4), (0, 5),  # 1队胜  
    (1, 3), (1, 4), (1, 5),          # 2队胜  
    (2, 0), (2, 1), (2, 3),          # 3队胜  
    (3, 4), (3, 5),                  # 4队胜  
    (4, 2), (4, 5),                  # 5队胜  
    (5, 2)                           # 6队胜  
]  
  
 
num_teams = 6  
  
 
row_ind = []  
col_ind = []  
data = []  
for u, v in edges:  
    row_ind.append(u)  
    col_ind.append(v)  
    data.append(1)  
adj_matrix = csr_matrix((data, (row_ind, col_ind)), shape=(num_teams, num_teams))  
  
 
adj_matrix_T = adj_matrix.T  
  
 
d = 0.85  
out_degree = np.array(adj_matrix_T.sum(axis=1)).flatten()  
out_degree[out_degree == 0] = 1  
M = adj_matrix_T.multiply(1.0 / out_degree).tocsr()  
M = M + (1 - d) / num_teams * csr_matrix(np.ones((num_teams, num_teams)))  
  
 
R = np.ones(num_teams) / num_teams  
  
 
num_iterations = 100  
for _ in range(num_iterations):  
    R = R.dot(M.toarray())  
  
 
pagerank_ranking = np.argsort(-R) 
  
 
for i, rank in enumerate(pagerank_ranking):  
    print(f"{chr(65 + rank)}队 PageRank排名 {i + 1}")
 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值