2017 Multi-University Training Contest - Team 1(hdu 6033 Add More Zero)

本文介绍了一种简单的方法来确定特定超级计算机可以处理的最大整数范围。通过计算(2^m-1)的十进制位数,可以找出适合该计算机的最大k值,即1到10^k之间的整数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Add More Zero

Time Limit: 2000/1000 MS(Java/Others)    Memory Limit: 131072/131072 K(Java/Others)
Total Submission(s): 733    Accepted Submission(s): 508


Problem Description

There is ayoungster known for amateur propositions concerning several mathematical hardproblems.

Nowadays, he is preparing a thought-provoking problem on a specific type ofsupercomputer which has ability to support calculations of integers between 0 and (
2m1) (inclusive).


As a young man born with ten fingers, he loves the powers of 10 so much, which results in his eccentricity that he always ranges integers he would like to use from 1 to 10k (inclusive).

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.

Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.

 

Input

The input containsmultiple test cases. Each test case in one line contains only one positiveinteger m, satisfying 1≤m≤105.

 

 

Output

For each testcase, output "Case #xy" in one line(without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.

 

 

Sample Input

1

64

 

Sample Output

Case #1: 0

Case #2: 19

 

水题,题意是求(2m−1) 有十进制几位数,其实就是求log10(2m−1),即m*log10(2),代码很简单:

 

#include <bits/stdc++.h>
using namespace std;
int main()
{
	int m,t,k;
	t=1;
	while(cin>>m)
	{
		k=double(m)*log10(2.0);
		cout<<"Case #"<<t++<<": "<<k<<endl;
	}
	return 0;
}


 

2m1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值