Machine Learning -- data visualizations--PCA (heart disease data)

该章节通过PCA进行数据可视化,将13维心脏病数据降至2维。标准化数据后,发现前两个主成分解释了47.22%的方差,但大量信息丢失,不适合项目需求。最终决定在后续分析中使用全部13个特征。

OverView

In this chapte, I will use PCA for data visualization. Visualizing 2 or 3 dimensional data is not that challenging, however, here we get 13 features.
Now, I will use PCA to reduce that 13 dimensional data into 2 dimensions so that you can plot and hopefully understand the data better.

Step1: Standardize the Data

PCA is effected by scale so you need to scale the features in your data before applying PCA. Use StandardScaler to help you standardize the dataset’s features onto unit scale (mean = 0 and variance = 1) which is a requirement for the optimal performance of many machine learning algorithms.

## load data
trainSet = pd.read_csv("clevelandtrain.csv")
testSet = pd.read_csv("clevelandtest.csv")

xtrain = (trainSet.drop(["heartdisease::category|0|1"], axis=1)).iloc[:,:].values  # (152, 13)
ytrain = trainSet["heartdisease::category|0|1"].iloc[:].values                     # (152,)

xtest = (testSet.drop(["heartdisease::category|0|1"], axis=1)).iloc[:,:].values    # (145, 13)
ytest = testSet["heartdisease::category|0|1"].iloc[:].values                       # (145,)

print("the first 4 raw data is:\n"<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值