参考:http://baike.baidu.com/view/1008149.htm
http://blog.youkuaiyun.com/kalilili/article/details/43484765
一、概述
如果一个系统由 n 个变量和 m 个约束条件组成,形成 m 个形如 xi - xj ≤ k 的不等式(i, j ∈ [1, n], k为常数),则称其为差分约束系统(system of difference constraints)
亦即,差分约束系统是求解关于一组变量的特殊不等式组的方法
二、求解
求解差分约束系统,可以转化成图论的单源最短路径(或最长路径)问题
在最短路中,我们用 dis[u] 和 dis[v] 表示从源点到 u 和 v 的最短路径的权值之和,w[u, v] 表示 u->v 这条边的权值
显然有 dis[v] <= dis[u] + w[u, v] 即 dis[v] - dis[u] <= w[u, v]
观察发现上式与差分约束系统中不等式类似
于是我们可以把差分约束系统转化为一张图
例如:
有不等式组
x1 - x2 ≤ 0
x1 - x5 ≤ -1
x2 - x5 ≤ 1
x3 - x1 ≤ 5
x4 - x1 ≤ 4
x4 - x3 ≤ -1
x5 - x3 ≤ 3
x5 - x4 ≤ -3
把所有的不等式都转化为图中的一条边,对于约束条件 xi - xj ≤ k 即 xi ≤ xj + k ,以变量 xi、xj 为结点 vi,vj,连接一条边 vj->vi,边权为 k
我们再增加一个源点 v0,v0 与所有结点相连,边权均为 0
于是不等式组中又增加了下列不等式:
x1 - x0 ≤ 0
x2 - x0 ≤ 0
x3 - x0 ≤ 0
x4 - x0 ≤ 0
x5 - x0 ≤ 0
最后形成的如下所示的一张图:
现在以 v0 为源点,求单源最短路径。最终得到的 v0 到 vn 的最短路径长度就是 xn 的一个解
由图可知,这组解为 {-5, -3, 0, -1, -4}
如果有一组解 {x1, x2, ..., xn} 存在,那么对于任意一个常数 k,{x1 + k, x2 + k, ..., xn + k} 这组解肯定也是存在的
因为对于每个约束条件 xi - xj ≤ k,xi 和 xj 同时加上或减去一个数后仍然成立
所以这个不等式组要么无解,否则有无数组解
如果从源点到某个结点不存在最短路径,也就是说图中存在负权环,不等式组无解
三、
HDU 1531 King
参考:http://www.cnblogs.com/wally/p/3228581.html
首先吐槽一下题面,写这么长而且下标还有毒...给跪了
设 sum[i] = a[1] + a[2] + …… + a[i],于是有 a[si] + a[si + 1] + ... + a[si + ni] = sum[si + ni] - sum[si - 1]
从而有 sum[si + ni] - sum[si - 1] > ki 或者 sum[si + ni] - sum[si - 1] < ki
将不等式变形为差分约束系统中不等式的形式 sum[si-1] - sum[si+ni] ≤ -ki - 1, sum[si + ni] - sum[si - 1] ≤ ki - 1
建图跑最短路判断是否有负权环就可以了
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <bitset>
#include <ctime>
#include <cctype>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> Pair;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int maxn = 100 + 10;
int head[maxn], to[2 * maxn], Next[2 * maxn], val[2 * maxn];
int n, m, si, ni, ki, edge = 0;
char oi[10];
int dis[maxn], cnt[maxn];
bool vis[maxn];
void init(void);
void add_edge(int u, int v, int _val);
bool spfa(int s);
int main() {
#ifdef Floyd
freopen("in.txt", "r", stdin);
#endif
while (scanf("%d", &n) != EOF && n != 0) {
init();
scanf("%d", &m);
while (m--) {
scanf("%d %d %s %d", &si, &ni, oi, &ki);
if (oi[0] == 'g') {
add_edge(si + ni, si - 1, -ki - 1);
} else {
add_edge(si - 1, si + ni, ki - 1);
}
}
int s = n + 1;
for (int i = 0; i <= n; ++i) {
add_edge(s, i, 0);
}
if (spfa(s)) {
printf("lamentable kingdom\n");
} else {
printf("successful conspiracy\n");
}
}
return 0;
}
bool spfa(int s) {
memset(vis, false, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i <= n + 1; ++i) {
dis[i] = INF;
}
dis[s] = 0;
queue<int> q; q.push(s);
while (!q.empty()) {
int f = q.front(); q.pop();
vis[f] = false; cnt[f]++;
if (cnt[f] > n + 1) { return false; }
for (int i = head[f]; i != -1; i = Next[i]) {
int v = to[i], w = val[i];
if (dis[v] > dis[f] + w) {
dis[v] = dis[f] + w;
if (!vis[v]) { vis[v] = true; q.push(v); }
}
}
}
return true;
}
void init(void) {
memset(head, -1, sizeof(head));
edge = 0;
}
void add_edge(int u, int v, int _val) {
to[edge] = v; val[edge] = _val; Next[edge] = head[u]; head[u] = edge++;
}
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <bitset>
#include <ctime>
#include <cctype>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> Pair;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int maxn = 200 + 10;
struct Edge {
int u, v, val;
};
Edge edge[maxn];
int n, m, si, ni, ki, cnt = 0;
char oi[10];
int dis[maxn];
void add_edge(int u, int v, int val);
bool bellman_ford(int s);
int main() {
#ifdef Floyd
freopen("in.txt", "r", stdin);
#endif
while (scanf("%d", &n) != EOF && n != 0) {
cnt = 0;
scanf("%d", &m);
while (m--) {
scanf("%d %d %s %d", &si, &ni, oi, &ki);
if (oi[0] == 'g') {
add_edge(si + ni, si - 1, -ki - 1);
} else {
add_edge(si - 1, si + ni, ki - 1);
}
}
int s = n + 1;
for (int i = 0; i <= n; ++i) {
add_edge(s, i, 0);
}
if (bellman_ford(s)) {
printf("lamentable kingdom\n");
} else {
printf("successful conspiracy\n");
}
}
return 0;
}
bool bellman_ford(int s) {
for (int i = 0; i <= n + 1; ++i) {
dis[i] = INF;
}
dis[s] = 0;
for (int i = 0; i <= n; ++i) {
bool flag = false;
for (int j = 0; j < cnt; ++j) {
int u = edge[j].u, v = edge[j].v, val = edge[j].val;
if (dis[v] > dis[u] + val) { dis[v] = dis[u] + val; flag = true; }
}
if (!flag) {
break;
}
}
for (int j = 0; j < cnt; ++j) {
int u = edge[j].u, v = edge[j].v, val = edge[j].val;
if (dis[v] > dis[u] + val) { return false; }
}
return true;
}
void add_edge(int u, int v, int val) {
edge[cnt].u = u, edge[cnt].v = v, edge[cnt++].val = val;
}
COGS 286 [NOI1999] 01串
参考:https://www.byvoid.com/blog/noi-1999-solution/
解题思路:
定义 sum[i] 为串的前 i 位之和,显然有 s[i] = sum[i] - sum[i-1]
根据 sum 的意义,我们可以很容易得出约束条件 0 <= sum[i] - sum[i-1] <= 1 ①
当 i >= L1 时,从 s[i-L1+1] 至 s[i],长度为 L1 的子串,其中 1 的个数为 sum[i] - sum[i-L1]
根据题中条件,应满足 A1 <= C[i] - C[i-L1] <= B1 ②
同样的,当 i>=L0,从 s[i-L0+1] 至 s[i],长度为 L0 的子串,其中 0 的个数为 L0 - (sum[i] - sum[i-L1])
应满足 A0 <= L0 - (sum[i] - sum[i-L1]) <= A1 ③
由上述 ① ② ③ 3 个不等式,可以得出
- sum[i] - sum[i-1] <= 1 (1<=i<=N)
- sum[i-1] - sum[i] <= 0 (1<=i<=N)
- sum[i-L1] - sum[i] <= -A1 (i-L1>=0)
- sum[i] - sum[i-L1] <= B1 (i-L1>=0)
- sum[i] - sum[i-L0] <= L0-A0 (i-L0>=0)
- sum[i-L0] - sum[i] <= B0-L0 (i-L0>=0)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <bitset>
#include <ctime>
#include <cctype>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> Pair;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 10;
int head[maxn], Next[6 * maxn], to[6 * maxn], val[6 * maxn];
int edge = 0, N, A0, B0, L0, A1, B1, L1;
int dis[maxn], cnt[maxn];
bool vis[maxn];
void add_edge(int u, int v, int _val);
bool spfa(void);
int main() {
freopen("sequence.in", "r", stdin);
freopen("sequence.out", "w", stdout);
scanf("%d %d %d %d %d %d %d", &N, &A0, &B0, &L0, &A1, &B1, &L1);
memset(head, -1, sizeof(head));
edge = 0;
for (int i = L0; i <= N; ++i) {
add_edge(i, i - L0, B0 - L0); add_edge(i - L0, i, L0 - A0);
}
for (int i = L1; i <= N; ++i) {
add_edge(i, i - L1, -A1); add_edge(i - L1, i, B1);
}
for (int i = 1; i <= N; ++i) {
add_edge(i, i - 1, 0); add_edge(i - 1, i, 1);
}
if (spfa()) {
for (int i = 1; i <= N; ++i) {
printf("%d", dis[i] - dis[i - 1]);
}
printf("\n");
} else {
printf("-1\n");
}
return 0;
}
void add_edge(int u, int v, int _val) {
to[edge] = v; val[edge] = _val; Next[edge] = head[u]; head[u] = edge++;
}
bool spfa(void) {
memset(vis, false, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
for (int i = 1; i <= N; ++i) {
dis[i] = INF;
}
dis[0] = 0;
queue<int> q; q.push(0);
while (!q.empty()) {
int f = q.front(); q.pop();
vis[f] = false; ++cnt[f];
if (cnt[f] > N) {
return false;
}
for (int i = head[f]; i != -1; i = Next[i]) {
int v = to[i], w = val[i];
if (dis[v] > dis[f] + w) {
dis[v] = dis[f] + w;
if (!vis[v]) { vis[v] = true; q.push(v); }
}
}
}
return true;
}
3、HDU 3666 THE MATRIX PROBLEM
参考:http://www.cnblogs.com/acSzz/archive/2012/10/17/2728073.html
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <cctype>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> Pair;
const int mod = 1e9 + 7;
const int INF = 0x7fffffff;
const int maxn = 400 + 10;
int N, M, edge, s = 1;
double L, U;
int head[2 * maxn], cnt[2 * maxn], Next[2 * maxn * maxn], to[2 * maxn * maxn];
double val[2 * maxn * maxn];
double C[maxn][maxn];
bool vis[2 * maxn];
double dis[2 * maxn];
void init(void);
void add_edge(int u, int v, double _val);
bool spfa(void);
int main() {
#ifdef Floyd
freopen("in.txt", "r", stdin);
#endif
while (scanf("%d %d %lf %lf", &N, &M, &L, &U) != EOF) {
double L_t = log(L), U_t = log(U);
init();
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= M; ++j) {
scanf("%lf", &C[i][j]);
double t = log(C[i][j]);
add_edge(i, j + N, -L_t + t); add_edge(j + N, i, U_t - t);
}
}
if (spfa()) {
printf("YES\n");
} else {
printf("NO\n");
}
}
return 0;
}
void init(void) {
memset(head, -1, sizeof(head));
edge = 0;
}
void add_edge(int u, int v, double _val) {
to[edge] = v; val[edge] = _val; Next[edge] = head[u]; head[u] = edge++;
}
bool spfa(void) {
memset(vis, false, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
dis[s] = 0.0;
for (int i = 2; i <= N + M; ++i) { dis[i] = 1.0 * INF; }
queue<int> q; q.push(s);
while (!q.empty()) {
int f = q.front(); q.pop();
vis[f] = false; ++cnt[f];
if (cnt[f] > (int)sqrt(1.0 * (N + M))) { return false; }
for (int i = head[f]; i != -1; i = Next[i]) {
int v = to[i];
double w = val[i];
if (dis[v] > dis[f] + w) {
dis[v] = dis[f] + w;
if (!vis[v]) { vis[v] = true; q.push(v); }
}
}
}
return true;
}