POJ1837-Balance

本文介绍了一个关于平衡装置的问题,该装置由两个臂组成,每个臂上有若干钩子,目标是将不同重量的砝码挂在这些钩子上,并使整个装置达到平衡状态。文章详细解释了输入数据的结构,包括钩子的数量、位置以及砝码的重量,并提供了一个使用动态规划(背包问题)的方法来解决此问题的示例代码。

Gigel has a strange “balance” and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm’s length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: ‘-’ for the left arm and ‘+’ for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights’ values.
Output
The output contains the number M representing the number of possibilities to poise the balance.
Sample Input
2 4
-2 3
3 4 5 8
Sample Output
2

题意:第一行给出n个钩子,m个砝码,接下来是n个钩子的位置,然后m个砝码的重量。问有几种方法能让砝码全部挂在钩子上且天平平衡。
思路:naive 20^20暴搜? 做这题的时候想起了同济惨案2333类似题我直接暴搜了一发。比赛之后问强神怎么做233说用背包。做这题的时候就直接想到了背包。感觉这题还是个加强版,因为有钩子位置的问题所以每个砝码的权值有n种背包权值。每个砝码只能挂一次,但是权值有许多种,所以我们必须开二维背包。就相当于对第i个砝码的第j种权值和第i个砝码的第j+1种权值都是从第i-1个砝码得到的各个方案数转移过来的。
具体处理的时候为了避免出现负数,我们把所有权值同时加上最小值的绝对值这样平移范围可以避免负数出现。

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<vector>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<map>
#include<set>
using namespace std;

//thanks to pyf ...
//thanks to qhl ...

#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define mp(x,y) make_pair(x,y)
typedef pair<int, int> PII;
typedef long long ll;

const int N = 1e5 + 5;

int dp[30][N];
int mul[N], w[N];

int main()
{
    int n, m;
    while (cin >> n >> m)
    {
        for (int i = 1; i <= n; i++)
            cin >> mul[i];
        for (int i = 1; i <= m; i++)
            cin >> w[i];
        CLR(dp, 0);
        dp[0][7500] = 1;
        for (int i = 1; i <= m; i++)
        {
            for (int k = 1; k <= n; k++)
            {
                int cur = mul[k] * w[i];
                for (int j = 15000; j >= cur; j--)
                    dp[i][j] += dp[i - 1][j - cur];
            }
        }
        cout << dp[m][7500] << endl;
    }
}
内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值