POJ1837-Balance

本文介绍了一个关于平衡装置的问题,该装置由两个臂组成,每个臂上有若干钩子,目标是将不同重量的砝码挂在这些钩子上,并使整个装置达到平衡状态。文章详细解释了输入数据的结构,包括钩子的数量、位置以及砝码的重量,并提供了一个使用动态规划(背包问题)的方法来解决此问题的示例代码。

Gigel has a strange “balance” and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm’s length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: ‘-’ for the left arm and ‘+’ for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights’ values.
Output
The output contains the number M representing the number of possibilities to poise the balance.
Sample Input
2 4
-2 3
3 4 5 8
Sample Output
2

题意:第一行给出n个钩子,m个砝码,接下来是n个钩子的位置,然后m个砝码的重量。问有几种方法能让砝码全部挂在钩子上且天平平衡。
思路:naive 20^20暴搜? 做这题的时候想起了同济惨案2333类似题我直接暴搜了一发。比赛之后问强神怎么做233说用背包。做这题的时候就直接想到了背包。感觉这题还是个加强版,因为有钩子位置的问题所以每个砝码的权值有n种背包权值。每个砝码只能挂一次,但是权值有许多种,所以我们必须开二维背包。就相当于对第i个砝码的第j种权值和第i个砝码的第j+1种权值都是从第i-1个砝码得到的各个方案数转移过来的。
具体处理的时候为了避免出现负数,我们把所有权值同时加上最小值的绝对值这样平移范围可以避免负数出现。

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<vector>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<map>
#include<set>
using namespace std;

//thanks to pyf ...
//thanks to qhl ...

#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define mp(x,y) make_pair(x,y)
typedef pair<int, int> PII;
typedef long long ll;

const int N = 1e5 + 5;

int dp[30][N];
int mul[N], w[N];

int main()
{
    int n, m;
    while (cin >> n >> m)
    {
        for (int i = 1; i <= n; i++)
            cin >> mul[i];
        for (int i = 1; i <= m; i++)
            cin >> w[i];
        CLR(dp, 0);
        dp[0][7500] = 1;
        for (int i = 1; i <= m; i++)
        {
            for (int k = 1; k <= n; k++)
            {
                int cur = mul[k] * w[i];
                for (int j = 15000; j >= cur; j--)
                    dp[i][j] += dp[i - 1][j - cur];
            }
        }
        cout << dp[m][7500] << endl;
    }
}
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值