一、集成学习法(Ensemble Learning)
首先,让我们先来了解一下,什么是集成学习法。
① 将多个分类方法聚集在一起,以提高分类的准确率。
(这些算法可以是不同的算法,也可以是相同的算法。)
② 集成学习法由训练数据构建一组基分类器,然后通过对每个基分类器的预测进行投票来进行分类
③ 严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法。
④ 通常一个集成分类器的分类性能会好于单个分类器
⑤ 如果把单个分类器比作一个决策者的话,集成学习的方法就相当于多个决策者共同进行一项决策。
(集成学习法图解)
要掌握集成学习法,我们会提出以下两个问题:
1)怎么训练每个算法?
2)怎么融合每个算法?
因此,bagging方法和boosting方法应运而生
二、bagging(装袋)方法
① Bagging又叫自助聚集,是一种根据均匀概率分布从数据中重复抽样(有放回)的技术。
② 每个抽样生成的自助样本集上,训练一个基分类器;对训练过的分类器进行投票,将测试样本指派到得票最高的类中。
③ 每个自助样本集都和原数据一样大
④ 有放回抽样,一些样本可能在同一训练集中出现多次,一些可能被忽略。