集成学习法之bagging方法和boosting方法

一、集成学习法(Ensemble Learning)

首先,让我们先来了解一下,什么是集成学习法。

①  将多个分类方法聚集在一起,以提高分类的准确率。

(这些算法可以是不同的算法,也可以是相同的算法。)

②  集成学习法由训练数据构建一组基分类器,然后通过对每个基分类器的预测进行投票来进行分类

③  严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法。

④  通常一个集成分类器的分类性能会好于单个分类器

⑤  如果把单个分类器比作一个决策者的话,集成学习的方法就相当于多个决策者共同进行一项决策。


(集成学习法图解)

要掌握集成学习法,我们会提出以下两个问题:

1)怎么训练每个算法?

2)怎么融合每个算法?

因此,bagging方法和boosting方法应运而生


二、bagging(装袋)方法

①  Bagging又叫自助聚集,是一种根据均匀概率分布从数据中重复抽样(有放回)的技术。

②  每个抽样生成的自助样本集上,训练一个基分类器;对训练过的分类器进行投票,将测试样本指派到得票最高的类中。

③  每个自助样本集都和原数据一样大

④  有放回抽样,一些样本可能在同一训练集中出现多次,一些可能被忽略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值