算术转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类 型,否则操作就无法进行。
下面的层次体系称为寻常算术转换。
long double
double
float
unsigned long int
long int
unsigned int
int
如果某个操作数的类型在上面这个列表中排名较低,那么首先要转换为另外一个操作数的类型后执行运算。
警告: 但是算术转换要合理,要不然会有一些潜在的问题。
float f = 3.14;
int num = f;//隐式转换,会有精度丢失
操作符的属性
复杂表达式的求值有三个影响的因素。
- 操作符的优先级
- 操作符的结合性
- 是否控制求值顺序。
两个相邻的操作符先执行哪个?
取决于他们的优先级。如果两者的优先级相同,取决于他们的结合性。 操作符优先级
| 操作符 | 描述 | 用法示例 | 结果类型 | 结合性 | 是否控制求值 |
|---|---|---|---|---|---|
() | 聚组 | (表达式) | 与表达式同 | N/A | 否 |
() | 函数调用 | rexp(rexp, ..., rexp) | rexp | L-R | 否 |
[] | 下标引用 | rexp[rexp] | lexp | L-R | 否 |
. | 访问结构成员 | lexp.member_name | lexp | L-R | 否 |
-> | 访问结构指针成员 | rexp->member_name | lexp | L-R | 否 |
++ | 后缀自增 | lexp++ | rexp | L-R | 否 |
-- | 后缀自减 | lexp-- | rexp | L-R | 否 |
! | 逻辑反 | !rexp | rexp | R-L | 否 |
~ | 按位取反 | ~rexp | rexp | R-L | 否 |
+ | 单目,表示正值 | +rexp | rexp | R-L | 否 |
- | 单目,表示负值 | -rexp | rexp | R-L | 否 |
++ | 前缀自增 | ++lexp | rexp | R-L | 否 |
-- | 前缀自减 | --lexp | rexp | R-L | 否 |
* | 间接访问 | *rexp | lexp | R-L | 否 |
& | 取地址 | &lexp | rexp | R-L | 否 |
sizeof | 取其长度,以字节表示 | sizeof rexp sizeof(类型) | rexp | R-L | 否 |
(类型) | 类型转换 | (类型) rexp | rexp | R-L | 否 |
* | 乘法 | rexp * rexp | rexp | L-R | 否 |
/ | 除法 | rexp / rexp | rexp | L-R | 否 |
% | 整数取余 | rexp % rexp | rexp | L-R | 否 |
+ | 加法 | rexp + rexp | rexp | L-R | 否 |
- | 减法 | rexp - rexp | rexp | L-R | 否 |
<< | 左移位 | rexp << rexp | rexp | L-R | 否 |
>> | 右移位 | rexp >> rexp | rexp | L-R | 否 |
> | 大于 | rexp > rexp | rexp | L-R | 否 |
>= | 大于等于 | rexp >= rexp | rexp | L-R | 否 |
< | 小于 | rexp < rexp | rexp | L-R | 否 |
<= | 小于等于 | rexp <= rexp | rexp | L-R | 否 |
== | 等于 | rexp == rexp | rexp | L-R | 否 |
!= | 不等于 | rexp != rexp | rexp | L-R | 否 |
& | 位与 | rexp & rexp | rexp | L-R | 否 |
^ | 位异或 | rexp ^ rexp | rexp | L-R | 否 |
| ` | ` | 位或 | `rexp | rexp` | rexp |
&& | 逻辑与 | rexp && rexp | rexp | L-R | 是 |
| ` | ` | 逻辑或 | `rexp | ||
? : | 条件操作符 | rexp ? rexp : rexp | rexp | N/A | 是 |
= | 赋值 | lexp = rexp | rexp | R-L | 否 |
+= | 以…加 | lexp += rexp | rexp | R-L | 否 |
-= | 以…减 | lexp -= rexp | rexp | R-L | 否 |
*= | 以…乘 | lexp *= rexp | rexp | R-L | 否 |
/= | 以…除 | lexp /= rexp | rexp | R-L | 否 |
%= | 以…取模 | lexp %= rexp | rexp | R-L | 否 |
<<= | 以…左移 | lexp <<= rexp | rexp | R-L | 否 |
>>= | 以…右移 | lexp >>= rexp | rexp | R-L | 否 |
&= | 以…与 | lexp &= rexp | rexp | R-L | 否 |
^= | 以…异或 | lexp ^= rexp | rexp | R-L | 否 |
| ` | =` | 以…或 | `lexp | = rexp` | rexp |
, | 逗号 | rexp, rexp | rexp | L-R | 是 |
一些问题表达式
//表达式的求值部分由操作符的优先级决定。
//表达式1
a*b + c*d + e*f
注释:代码1在计算的时候,由于*比+的优先级高,只能保证,的计算是比+早,但是优先级并不 能决定第三个比第一个+早执行。
所以表达式的计算机顺序就可能是:
a*b
c*d
a*b + c*d
e*f
a*b + c*d + e*f
或者:
a*b
c*d
e*f
a*b + c*d
a*b + c*d + e*f
//表达式2
c + --c;
注释:同上,操作符的优先级只能决定自减–的运算在+的运算的前面,但是我们并没有办法得 知,+操作符的左操作数的获取在右操作数之前还是之后求值,所以结果是不可预测的,是有歧义 的。
//代码3-非法表达式
int main()
{
int i = 10;
i = i-- - --i * ( i = -3 ) * i++ + ++i;
printf("i = %d\n", i);
return 0;
}
表达式3在不同编译器中测试结果是不同的
//代码4
int fun()
{
static int count = 1;
return ++count;
}
int main()
{
int answer;
answer = fun() - fun() * fun();
printf( "%d\n", answer);//输出多少?
return 0;
}
这个代码有没有实际的问题?
有问题!
虽然在大多数的编译器上求得结果都是相同的。 但是上述代码 answer = fun() - fun() * fun(); 中我们只能通过操作符的优先级得知:先算乘法, 再算减法。
函数的调用先后顺序无法通过操作符的优先级确定。
总结:我们写出的表达式如果不能通过操作符的属性确定唯一的计算路径,那这个表达式就是存在问题 的。
文章讨论了算术运算中的类型转换规则,强调了操作符优先级和结合性在表达式求值中的作用,指出不合理的转换可能导致精度损失或计算歧义,并举例说明了表达式中存在的问题和不确定性。
1784

被折叠的 条评论
为什么被折叠?



