操作系统之进程管理

本文围绕进程与线程展开,介绍了进程和线程的概念及区别,阐述了进程状态的切换,包括就绪、运行和阻塞状态。还讲解了不同环境下的进程调度算法,如批处理、交互式和实时系统。此外,介绍了进程间的通信方式,最后分析了死锁的原因、必要条件及处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、进程与线程
1. 进程

进程是资源分配的基本单位。

进程控制块 (Process Control Block, PCB) 描述进程的基本信息和运行状态,所谓的创建进程和撤销进程,都是指对 PCB 的操作。

2. 线程

线程是独立调度的基本单位。

一个进程中可以有多个线程,它们共享进程资源。

QQ 和浏览器是两个进程,浏览器进程里面有很多线程,例如 HTTP 请求线程、事件响应线程、渲染线程等等,线程的并发执行使得在浏览器中点击一个新链接从而发起 HTTP 请求时,浏览器还可以响应用户的其它事件。

3. 进程与线程的区别
  • 进程是资源分配的最小单位,线程是处理器调度的最小单位。

  • 每个进程有自己独立的地址空间,每启动一个进程,系统就会为它分配地址空间,同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程都有自己独立的运行栈程序计数器(PC) 等,线程之间切换的开销小,因此CPU切换一个线程的花费远比进程要小很多,同时创建撤销一个线程的开销也比进程要小很多。

  • 线程之间的通信更方便,同一进程下的线程共享全局变量静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。

  • 但是多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间

  • 对于多核心CPU,线程利于充分发挥多处理器的功能,真正在处理器上运行的是线程。通过创建多线程进程(即一个进程可具有两个或更多个线程),每个线程在一个处理器上运行,从而实现应用程序的并行性,使每个处理器都得到充分运行。同一时刻在多核心处理器上也可运行多个进程,每个处理器运行其中一个线程(如果都是单线程进程,则每个处理器运行一个进程)。

  • 使用线程我们能够在一个进程中执行多个控制流。

  • 进程与线程均由内核调度。

二、进程状态的切换

在这里插入图片描述

  • 就绪状态(ready):等待被调度
  • 运行状态(running)
  • 阻塞状态(waiting):等待资源

应该注意以下内容:

  • 只有就绪态运行态可以相互转换,其它的都是单向转换。就绪状态的进程通过调度算法从而获得 CPU 时间,转为运行状态;而运行状态的进程,在分配给它的 CPU 时间片用完之后就会转为就绪状态,等待下一次调度。
  • 阻塞状态是缺少需要的资源从而由运行状态转换而来,但是该资源不包括 CPU 时间,缺少 CPU 时间会从运行态转换为就绪态。
三、进程调度算法

不同环境的调度算法目标不同,因此需要针对不同环境来讨论调度算法。

1. 批处理系统

批处理系统没有太多的用户操作,在该系统中,调度算法目标是保证吞吐量和周转时间(从提交到终止的时间)。

1.1 先来先服务 first-come first-serverd(FCFS)

非抢占式的调度算法,按照请求的顺序进行调度。

有利于长作业,但不利于短作业,因为短作业必须一直等待前面的长作业执行完毕才能执行,而长作业又需要执行很长时间,造成了短作业等待时间过长。

1.2 短作业优先 shortest job first(SJF)

非抢占式的调度算法,按估计运行时间最短的顺序进行调度。

长作业有可能会饿死,处于一直等待短作业执行完毕的状态。因为如果一直有短作业到来,那么长作业永远得不到调度。

1.3 最短剩余时间优先 shortest remaining time next(SRTN)

最短作业优先的抢占式版本,按剩余运行时间的顺序进行调度。 当一个新的作业到达时,其整个运行时间与当前进程的剩余时间作比较。如果新的进程需要的时间更少,则挂起当前进程,运行新的进程。否则新的进程等待。

2. 交互式系统

交互式系统有大量的用户交互操作,在该系统中调度算法的目标是快速地进行响应。

Linux,Windows 等均属于这种调度系统。

2.1 时间片轮转

将所有就绪进程按 FCFS(First Come First Served) 的原则排成一个队列,每次调度时,把 CPU 时间分配给队首进程,该进程可以执行一个时间片。当时间片用完时,由计时器发出时钟中断,调度程序便停止该进程的执行,并将它送往就绪队列的末尾,同时继续把 CPU 时间分配给队首的进程。

时间片轮转算法的效率和时间片的大小有很大关系:

  • 因为进程切换都要保存进程的信息并且载入新进程的信息,如果时间片太小,会导致进程切换得太频繁,在进程切换上就会花过多时间。
  • 而如果时间片过长,那么实时性就不能得到保证。
    在这里插入图片描述

2.2 优先级调度

为每个进程分配一个优先级,按优先级进行调度。

为了防止低优先级的进程永远等不到调度,可以随着时间的推移增加等待进程的优先级。

2.3 多级反馈队列

一个进程需要执行 100 个时间片,如果采用时间片轮转调度算法,那么需要交换 100 次。

多级队列是为这种需要连续执行多个时间片的进程考虑,它设置了多个队列,每个队列时间片大小都不同,例如 1,2,4,8,…。进程在第一个队列没执行完,就会被移到下一个队列。这种方式下,之前的进程只需要交换 7 次。

每个队列优先权也不同,最上面的优先权最高。因此只有上一个队列没有进程在排队,才能调度当前队列上的进程。

可以将这种调度算法看成是时间片轮转调度算法和优先级调度算法的结合。

在这里插入图片描述

3. 实时系统

实时系统要求一个请求在一个确定时间内得到响应。

分为硬实时和软实时,前者必须满足绝对的截止时间,后者可以容忍一定的超时。

四、进程间的通信方式(IPC)

进程同步与进程通信很容易混淆,它们的区别在于:

  • 进程同步:控制多个进程按一定顺序执行;
  • 进程通信:进程间传输信息。

1. 管道
管道是通过调用 pipe 函数创建的,fd[0] 用于读,fd[1] 用于写。

#include <unistd.h>
int pipe(int fd[2]);
  • 半双工的通信方式
  • 只能在具有父子进程关系的进程间使用。
    在这里插入图片描述

2. 命名管道(FIFO)
也称为命名管道,去除了管道只能在父子进程中使用的限制。

#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);
  • 半双工的通信方式
  • 可以在无关的进程之间交换数据,与管道不同。

FIFO 常用于客户-服务器应用程序中,FIFO 用作汇聚点,在客户进程和服务器进程之间传递数据。
在这里插入图片描述

3. 消息队列

  • 消息队列是一列具有头和尾的消息排列,新来的消息放在队列尾部,而读取消息则从队列头部开始。
  • 消息队列无固定的读写进程,任何进程都可以读写;而管道需要指定谁读和谁写;

相比于 FIFO,消息队列具有以下优点:

  • 消息队列可以独立于读写进程存在,从而避免了 FIFO 中同步管道的打开和关闭时可能产生的困难;
  • 避免了 FIFO 的同步阻塞问题,不需要进程自己提供同步方法;
  • 读进程可以根据消息类型有选择地接收消息,而不像 FIFO 那样只能默认地接收。

4. 信号量

  • 信号量是一个计数器,可以用来控制多个进程对共享资源的访问。
  • 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存

5. 共享内存

  • 需要使用信号量用来同步对共享存储的访问。
  • 共享内存,指两个或多个进程共享一个给定的存储区。
  • 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
  • 当一段共享内存被创建以后,它并不能被任何进程访问。必须连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

6. 套接字(Socket)

  • 套接字(IP:port)也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。
五、死锁

死锁的根本原因是多个线程涉及到多个锁,这些锁存在着交叉,所以可能会导致了一个锁依赖的闭环

1. 死锁的四个必要条件
  • 互斥:每个资源要么已经分配给了一个进程,要么就是可用的。
  • 占有和等待:已经得到了某个资源的进程可以再请求新的资源。
  • 不可抢占:已经分配给一个进程的资源不能强制性地被抢占,它只能被占有它的进程显式地释放。
  • 环路等待:有两个或者两个以上的进程组成一条环路,该环路中的每个进程都在等待下一个进程所占有的资源。
2. 死锁的处理方法
2.1 鸵鸟策略

把头埋在沙子里,假装根本没发生问题。

因为解决死锁问题的代价很高,因此鸵鸟策略这种不采取任务措施的方案会获得更高的性能。

当发生死锁时不会对用户造成多大影响,或发生死锁的概率很低,可以采用鸵鸟策略。

大多数操作系统,包括 Unix,Linux 和 Windows,处理死锁问题的办法仅仅是忽略它。

2.2 死锁检测

在这里插入图片描述
上图为资源分配图,其中方框表示资源,圆圈表示进程。资源指向进程表示该资源已经分配给该进程,进程指向资源表示进程请求获取该资源。

图 a 可以抽取出环,如图 b,它满足了环路等待条件,因此会发生死锁。

每种类型一个资源的死锁检测算法是通过检测有向图是否存在环来实现,从一个节点出发进行深度优先搜索,对访问过的节点进行标记,如果访问了已经标记的节点,就表示有向图存在环,也就是检测到死锁的发生。

3. 死锁的恢复
  • 利用抢占恢复
  • 利用回滚恢复
  • 通过杀死进程恢复
4. 死锁的预防

破坏四个必要条件中的某一条。比如:

  • 若一个线程在一定的时间里没有成功的获取到锁,则会进行回退并释放之前获取到的锁,然后等待一段时间后进行重试(超时重试)。
  • 可重入锁。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值