LOJ刷题记录:2024-2029(SHOI2016)

这篇博客记录了作者在LOJ上刷题的体验,涵盖了SHOI2016年的题目2024、2027和2028。对于loj#2024「侦查守卫」,通过讨论节点放置守卫的不同情况解决树形结构问题。loj#2027「黑暗前的幻想乡」,采用枚举子集和矩阵树进行计算。loj#2028「随机序列」,通过直接维护求解问题的核心。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LOJ刷题记录:2024-2029(SHOI2016)


loj#2024. 「JLOI / SHOI2016」侦查守卫

f[nd][k] nd 这个子树,至少覆盖到包括 nd 上面 k 层;若k<0,则表示不包括 nd ,下面 k 层已经被覆盖。然后讨论两种转移情况:

  1. 这个节点放一个
  2. 这个节点不放

要分开判断是欠着还是富余…

然后就是码农题了..

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 500005;

struct node {
    int to, next;
} edge[MAXN*2];
int head[MAXN], top = 0;
inline void push(int i, int j)
{ edge[++top] = (node) {j, head[i]}, head[i] = top;}

int f[MAXN][45]; // f[nd][k] --> nd这个子树,至少覆盖到包括nd上面k层;若k<0,则表示不包括nd,下面-k层已经被覆盖
int w[MAXN], hav[MAXN];
int n, m, d;

void dfs(int nd, int fa)
{
    int sd[45];
    memset(sd, 0, sizeof sd);
    for (register int i = head[nd]; i; i = edge[i].next) {
        if (edge[i].to == fa) continue;
            dfs(edge[i].to, nd);
        for (int j = -d; j <= d+1; j++)
            sd[j+22] += f[edge[i].to][j+22];
    }
    for (register int k = -d; k <= d+1; k++) {
        f[nd][k+22] = w[nd];
        for (register int i = head[nd]; i; i = edge[i].next) {
            if (edge[i].to == fa) continue;
            f[nd][k+22] += f[edge[i].to][-d+1+22];
        }
        if (k <= 0) f[nd][k+22] = min(f[nd][k+22], sd[k+1+22]);
        if (k == 1 && !hav[nd]) f[nd][k+22] = min(f[nd][k+22], sd[1+22]);
        int need = k;
        if (k != 1 || hav[nd]) need++;
        if (need < 1) need = 1;
        for (register int i = head[nd]; i; i = edge[i].next) { // 有干扰,枚举干扰节点
            if (edge[i].to == fa) continue;
            for (register int j = max(need, 2); j <= d+1; j++) {
                f[nd][k+22] = min(f[nd][k+22], f[edge[i].to][j+22]+sd[3-j+22]-f[edge[i].to][3-j+22]);
            } 
        }
    }
}

int main()
{
    memset(f, -1, sizeof f);
    scanf("%d%d", &n, &d);
    for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
    scanf("%d", &m);
    for (register int i = 1; i <= m; i++) {
        int u; scanf("%d", &u);
        hav[u] = 1;
    }
    for (register int i = 1; i < n; i++) {
        int u, v; scanf("%d%d", &u, &v);
        push(u, v), push(v, u);
    }
    dfs(1, 0);
    printf("%d\n", f[1][1+22]);
    return 0;
}

loj#2027. 「SHOI2016」黑暗前的幻想乡

SH·数数大赛·OI….

枚举子集,然后用矩阵树算一算…再容斥起来。复杂度及其不科学..然而跑得比谁都快

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 20, mod = 1e9+7;

int n;
vector<pair<int, int> > M[MAXN];
int g[MAXN][MAXN];

inline int power(int a, int n)
{
    int ans = 1;
    for (int i = 0; i <= 30; i++) {
        if (n&(1<<i)) ans = (long long)ans*a%mod;
        a = (long long)a*a%mod;
    }
    return ans;
}

inline int inv(int a)
{ return power(a, mod-2); }

int gauss()
{
    int flag = 1;
    for (int i = 1; i < n; i++) {
        int pos = i;
        while (pos < n && !g[pos][i]) pos++;
        if (pos == n) return 0;
        if (pos != i) swap(g[pos], g[i]), flag *= -1;
        for (int j = 1; j < n; j++) {
            if (j == i) continue;
            int tmp = ((-(long long)g[j][i]*inv(g[i][i]))%mod+mod)%mod;
            for (int k = 1; k < n; k++)
                g[j][k] = (g[j][k]+(long long)g[i][k]*tmp)%mod;
        }
    }
    for (int i = 1; i < n; i++)
        flag = (long long)flag*g[i][i]%mod;
    return (flag+mod)%mod;
}

int main()
{
    scanf("%d", &n);
    for (int i = 1; i < n; i++) {
        int mi, u, v; scanf("%d", &mi);
        for (int j = 1; j <= mi; j++) {
            scanf("%d%d", &u, &v);
            M[i].push_back(make_pair(u, v));
        }
    }
    int ans = 0;
    for (int i = 0; i < (1<<(n-1)); i++) {
        int num = 0;
        memset(g, 0, sizeof g);
        for (int j = 1; j < n; j++) {
            if (!(i&(1<<(j-1)))) continue;
            num++;
            for (int k = 0; k < M[j].size(); k++) {
                int u = M[j][k].first, v = M[j][k].second;
                g[u][v]--, g[v][u]--, g[u][u]++, g[v][v]++;
            }
        }
        if ((n-1-num)&1) ans -= gauss();
        else ans += gauss();
        ((ans %= mod) += mod) %= mod;
    }
    printf("%d\n", ans);
    return 0;
}

loj#2028. 「SHOI2016」随机序列

每一个加号都会有一个减号消掉他,所以贡献只来源于第一个加减前面的..所以直接维护就好了。


#include <bits/stdc++.h>
using namespace std;

const int MAXN = 100005, mod = 1e9+7;

int n, q;
int arr[MAXN];

int a[MAXN*4];
int lc[MAXN*4], rc[MAXN*4], l[MAXN*4], r[MAXN*4], root, top = 0, dat[MAXN*4];
int tag[MAXN*4];

int power(int a, int n)
{
    int ans = 1;
    for (int i = 0; i <= 30; i++) {
        if (n&(1<<i)) ans = (long long)ans*a%mod;
        a = (long long)a*a%mod;
    }
    return ans;
}

int inv(int a)
{ return power(a, mod-2); }

void build(int &nd, int opl, int opr)
{
    nd = ++top, l[nd] = opl, r[nd] = opr, tag[nd] = 1;
    if (opl == opr) dat[nd] = a[opl];
    else {
        int mid = (l[nd]+r[nd])>>1;
        build(lc[nd], opl, mid), build(rc[nd], mid+1, opr);
        dat[nd] = (dat[lc[nd]]+dat[rc[nd]])%mod;
    }
}

void pdw(int nd)
{
    if (lc[nd]) tag[lc[nd]] = (long long)tag[nd]*tag[lc[nd]]%mod, tag[rc[nd]] = (long long)tag[nd]*tag[rc[nd]]%mod;
    dat[nd] = (long long)dat[nd]*tag[nd]%mod, tag[nd] = 1;
}

void modify(int nd, int opl, int opr, int dt)
{
    // cerr << nd << " " << opl << " " << opr << " " << dt << endl;
    pdw(nd);
    if (l[nd] == opl && r[nd] == opr) tag[nd] = (long long)tag[nd]*dt%mod;
    else {
        int mid = (l[nd]+r[nd])/2;
        if (opr <= mid) modify(lc[nd], opl, opr, dt);
        else if (opl > mid) modify(rc[nd], opl, opr, dt);
        else modify(lc[nd], opl, mid, dt), modify(rc[nd], mid+1, opr, dt);
        pdw(lc[nd]), pdw(rc[nd]);
        dat[nd] = (dat[lc[nd]]+dat[rc[nd]])%mod;
    }
}

int main()
{
    // cerr << (long long)2414*inv(2414)%mod << endl;
    scanf("%d%d", &n, &q);
    for (int i = 1; i <= n; i++) scanf("%d", &arr[i]);
    int mul = 1;
    for (int i = 1; i <= n; i++) {
        mul = (long long)mul*arr[i]%mod;
        if (i < n) a[i] = (long long)mul*2*power(3, n-i-1)%mod;
        else a[i] = mul;
    }
    build(root, 1, n);
    // cerr << dat[root] << endl;
    for (int i = 1; i <= q; i++) {
        int t, v;
        scanf("%d%d", &t, &v);
        modify(root, t, n, (long long)inv(arr[t])*v%mod), arr[t] = v;
        pdw(root), printf("%d\n", dat[root]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值