LOJ刷题记录:2024-2029(SHOI2016)
loj#2024. 「JLOI / SHOI2016」侦查守卫
设
f[nd][k]
为
nd
这个子树,至少覆盖到包括
nd
上面
k
层;若
- 这个节点放一个
- 这个节点不放
要分开判断是欠着还是富余…
然后就是码农题了..
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 500005;
struct node {
int to, next;
} edge[MAXN*2];
int head[MAXN], top = 0;
inline void push(int i, int j)
{ edge[++top] = (node) {j, head[i]}, head[i] = top;}
int f[MAXN][45]; // f[nd][k] --> nd这个子树,至少覆盖到包括nd上面k层;若k<0,则表示不包括nd,下面-k层已经被覆盖
int w[MAXN], hav[MAXN];
int n, m, d;
void dfs(int nd, int fa)
{
int sd[45];
memset(sd, 0, sizeof sd);
for (register int i = head[nd]; i; i = edge[i].next) {
if (edge[i].to == fa) continue;
dfs(edge[i].to, nd);
for (int j = -d; j <= d+1; j++)
sd[j+22] += f[edge[i].to][j+22];
}
for (register int k = -d; k <= d+1; k++) {
f[nd][k+22] = w[nd];
for (register int i = head[nd]; i; i = edge[i].next) {
if (edge[i].to == fa) continue;
f[nd][k+22] += f[edge[i].to][-d+1+22];
}
if (k <= 0) f[nd][k+22] = min(f[nd][k+22], sd[k+1+22]);
if (k == 1 && !hav[nd]) f[nd][k+22] = min(f[nd][k+22], sd[1+22]);
int need = k;
if (k != 1 || hav[nd]) need++;
if (need < 1) need = 1;
for (register int i = head[nd]; i; i = edge[i].next) { // 有干扰,枚举干扰节点
if (edge[i].to == fa) continue;
for (register int j = max(need, 2); j <= d+1; j++) {
f[nd][k+22] = min(f[nd][k+22], f[edge[i].to][j+22]+sd[3-j+22]-f[edge[i].to][3-j+22]);
}
}
}
}
int main()
{
memset(f, -1, sizeof f);
scanf("%d%d", &n, &d);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
scanf("%d", &m);
for (register int i = 1; i <= m; i++) {
int u; scanf("%d", &u);
hav[u] = 1;
}
for (register int i = 1; i < n; i++) {
int u, v; scanf("%d%d", &u, &v);
push(u, v), push(v, u);
}
dfs(1, 0);
printf("%d\n", f[1][1+22]);
return 0;
}
loj#2027. 「SHOI2016」黑暗前的幻想乡
SH·数数大赛·OI….
枚举子集,然后用矩阵树算一算…再容斥起来。复杂度及其不科学..然而跑得比谁都快
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 20, mod = 1e9+7;
int n;
vector<pair<int, int> > M[MAXN];
int g[MAXN][MAXN];
inline int power(int a, int n)
{
int ans = 1;
for (int i = 0; i <= 30; i++) {
if (n&(1<<i)) ans = (long long)ans*a%mod;
a = (long long)a*a%mod;
}
return ans;
}
inline int inv(int a)
{ return power(a, mod-2); }
int gauss()
{
int flag = 1;
for (int i = 1; i < n; i++) {
int pos = i;
while (pos < n && !g[pos][i]) pos++;
if (pos == n) return 0;
if (pos != i) swap(g[pos], g[i]), flag *= -1;
for (int j = 1; j < n; j++) {
if (j == i) continue;
int tmp = ((-(long long)g[j][i]*inv(g[i][i]))%mod+mod)%mod;
for (int k = 1; k < n; k++)
g[j][k] = (g[j][k]+(long long)g[i][k]*tmp)%mod;
}
}
for (int i = 1; i < n; i++)
flag = (long long)flag*g[i][i]%mod;
return (flag+mod)%mod;
}
int main()
{
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int mi, u, v; scanf("%d", &mi);
for (int j = 1; j <= mi; j++) {
scanf("%d%d", &u, &v);
M[i].push_back(make_pair(u, v));
}
}
int ans = 0;
for (int i = 0; i < (1<<(n-1)); i++) {
int num = 0;
memset(g, 0, sizeof g);
for (int j = 1; j < n; j++) {
if (!(i&(1<<(j-1)))) continue;
num++;
for (int k = 0; k < M[j].size(); k++) {
int u = M[j][k].first, v = M[j][k].second;
g[u][v]--, g[v][u]--, g[u][u]++, g[v][v]++;
}
}
if ((n-1-num)&1) ans -= gauss();
else ans += gauss();
((ans %= mod) += mod) %= mod;
}
printf("%d\n", ans);
return 0;
}
loj#2028. 「SHOI2016」随机序列
每一个加号都会有一个减号消掉他,所以贡献只来源于第一个加减前面的..所以直接维护就好了。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005, mod = 1e9+7;
int n, q;
int arr[MAXN];
int a[MAXN*4];
int lc[MAXN*4], rc[MAXN*4], l[MAXN*4], r[MAXN*4], root, top = 0, dat[MAXN*4];
int tag[MAXN*4];
int power(int a, int n)
{
int ans = 1;
for (int i = 0; i <= 30; i++) {
if (n&(1<<i)) ans = (long long)ans*a%mod;
a = (long long)a*a%mod;
}
return ans;
}
int inv(int a)
{ return power(a, mod-2); }
void build(int &nd, int opl, int opr)
{
nd = ++top, l[nd] = opl, r[nd] = opr, tag[nd] = 1;
if (opl == opr) dat[nd] = a[opl];
else {
int mid = (l[nd]+r[nd])>>1;
build(lc[nd], opl, mid), build(rc[nd], mid+1, opr);
dat[nd] = (dat[lc[nd]]+dat[rc[nd]])%mod;
}
}
void pdw(int nd)
{
if (lc[nd]) tag[lc[nd]] = (long long)tag[nd]*tag[lc[nd]]%mod, tag[rc[nd]] = (long long)tag[nd]*tag[rc[nd]]%mod;
dat[nd] = (long long)dat[nd]*tag[nd]%mod, tag[nd] = 1;
}
void modify(int nd, int opl, int opr, int dt)
{
// cerr << nd << " " << opl << " " << opr << " " << dt << endl;
pdw(nd);
if (l[nd] == opl && r[nd] == opr) tag[nd] = (long long)tag[nd]*dt%mod;
else {
int mid = (l[nd]+r[nd])/2;
if (opr <= mid) modify(lc[nd], opl, opr, dt);
else if (opl > mid) modify(rc[nd], opl, opr, dt);
else modify(lc[nd], opl, mid, dt), modify(rc[nd], mid+1, opr, dt);
pdw(lc[nd]), pdw(rc[nd]);
dat[nd] = (dat[lc[nd]]+dat[rc[nd]])%mod;
}
}
int main()
{
// cerr << (long long)2414*inv(2414)%mod << endl;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++) scanf("%d", &arr[i]);
int mul = 1;
for (int i = 1; i <= n; i++) {
mul = (long long)mul*arr[i]%mod;
if (i < n) a[i] = (long long)mul*2*power(3, n-i-1)%mod;
else a[i] = mul;
}
build(root, 1, n);
// cerr << dat[root] << endl;
for (int i = 1; i <= q; i++) {
int t, v;
scanf("%d%d", &t, &v);
modify(root, t, n, (long long)inv(arr[t])*v%mod), arr[t] = v;
pdw(root), printf("%d\n", dat[root]);
}
return 0;
}