class Solution(object): def canConstruct(self, ransomNote, magazine): """ :type ransomNote: str :type magazine: str :rtype: bool """ # 统计 magazine 中每个字符的数量 char_count = {} for char in magazine: if char in char_count: char_count[char] += 1 else: char_count[char] = 1 # 检查 ransomNote 中的每个字符是否可以在 magazine 中找到 for char in ransomNote: if char in char_count and char_count[char] > 0: char_count[char] -= 1 else: return False return True # 测试用例 solution = Solution() ransomNote1 = "a" magazine1 = "b" print(solution.canConstruct(ransomNote1, magazine1)) # 输出: False ransomNote2 = "aa" magazine2 = "ab" print(solution.canConstruct(ransomNote2, magazine2)) # 输出: False ransomNote3 = "aa" magazine3 = "aab" print(solution.canConstruct(ransomNote3, magazine3)) # 输出: True
from openai import OpenAI import json def internlm_gen(prompt,client): ''' LLM生成函数 Param prompt: prompt string Param client: OpenAI client ''' response = client.chat.completions.create( model="internlm2.5-latest", messages=[ {"role": "user", "content": prompt}, ], stream=False ) return response.choices[0].message.content api_key = '' client = OpenAI(base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/",api_key=api_key) content = """ 书生浦语InternLM2.5是上海人工智能实验室于2024年7月推出的新一代大语言模型,提供1.8B、7B和20B三种参数版本,以适应不同需求。 该模型在复杂场景下的推理能力得到全面增强,支持1M超长上下文,能自主进行互联网搜索并整合信息。 """ prompt = f""" 请帮我从以下``内的这段模型介绍文字中提取关于该模型的信息,要求包含模型名字、开发机构、提供参数版本、上下文长度四个内容,以json格式返回。 `{content}` """ res = internlm_gen(prompt, client) if res: print(f"API Response: {res}") # 打印原始响应内容 try: # 去掉反引号 res = res.strip('```json\n') print(f"Stripped Response: {res}") # 打印去除反引号后的响应内容 res_json = json.loads(res) print(res_json) except json.JSONDecodeError as e: print(f"JSON Decode Error: {e}") print(f"Response Content: {res}") # 逐行打印 JSON 字符串,帮助调试 for i, line in enumerate(res.split('\n')): print(f"Line {i + 1}: {line}") else: print("No response from the API")
API Response: ```json
{
"model_name": "书生浦语InternLM2.5",
"developer": "上海人工智能实验室",
"parameter_versions": ["1.8B", "7B", "20B"],
"context_length": "1M"
}
```
Stripped Response: {
"model_name": "书生浦语InternLM2.5",
"developer": "上海人工智能实验室",
"parameter_versions": ["1.8B", "7B", "20B"],
"context_length": "1M"
}
{'model_name': '书生浦语InternLM2.5', 'developer': '上海人工智能实验室', 'parameter_versions': ['1.8B', '7B', '20B'], 'context_length': '1M'}进程已结束,退出代码为 0
转化成结构化json,返回结果多了```json导致bug,删去即可