AI日报 - 2025年07月07日

2025.7.7 AI行业新进展与工具发布
部署运行你感兴趣的模型镜像

🌐 一、【行业深度】  

1. 字节跳动开源Trae-Agent,智能编程迈入新纪元  

🔥 热点聚焦:字节跳动旗下AI原生集成开发环境Trae正式开源其核心组件Trae-Agent,为全球开发者提供全新的智能编程体验。用户仅需通过git clone和cd trae-agent命令即可快速部署该工具。Trae-Agent具备自然语言驱动编程任务自动化的功能,显著提升开发效率。它兼容OpenAI、Anthropic等主流大模型,并集成了文件编辑、脚本执行等常用工具,支持多轮交互及日志记录,适配Python3.12,与主流开发环境无缝衔接。  
进展追踪:Trae已拥有超百万月活用户,累计交付代码超过60亿行,成为全球开发者社区的重要力量。  
🔍 影响维度分析:  

技术普及开源策略降低AI编程门槛,推动智能化开发工具在全球范围内广泛应用。  
生态构建Trae-Agent的开放将吸引更多开发者参与生态共建,加速技术迭代与创新。
行业赋能提高软件开发效率,助力企业实现更快的产品上线周期与更高的创新能力。  

 ✨ 精彩呈现:


2. 谷歌Veo 3视频生成模型全球上线,短视频创作更轻松  

🔥 热点聚焦:谷歌推出新一代视频生成模型Veo 3,支持全球159个国家的Gemini用户使用文本提示生成最长8秒的视频内容。该模型专为创意视频制作设计,满足社交媒体对短视频日益增长的需求。目前仅面向Google AI Pro付费用户开放,每日限用三次,以确保资源合理分配。  
进展追踪:谷歌团队正在研发图像转视频功能,未来用户可通过上传图片生成相关动态视频,进一步拓展视频创作边界。  
🔍 影响维度分析:  

内容创作降低视频制作门槛,使更多非专业创作者能够高效产出高质量视觉内容。  
商业应用为企业营销、品牌传播提供便捷工具,增强数字广告与社交媒体运营能力。  
创新潜力推动AI在视频生成领域的持续突破,促进创意表达形式的多样化发展。  

  ✨ 精彩呈现

Veo 3视频生成


3. 腾讯元宝升级搜索功能,一句话匹配图文视频  

🔥 热点聚焦:腾讯智能助手元宝宣布核心搜索功能升级,新增“一句话搜索”功能,可智能匹配图片和视频号内容,提升信息获取效率。用户只需输入问题,即可获得文字、图片与视频结合的丰富回答,适用于技能学习、生活技巧查询等场景。  
进展追踪:该功能已在“联网搜索”模式下全面启用,兼容所有元宝模型版本。  
🔍 影响维度分析:  

用户体验整合多媒体资源,使搜索结果更加直观、沉浸,提升学习与解决问题的效率。  
教育辅助为自学用户提供结构化知识体系与实操指导,降低学习成本。  
社交传播借助视频号生态,增强信息传播力,推动优质内容在社交平台扩散。  

   ✨ 精彩呈现:

 


4. Kyutai TTS开源发布,低延迟语音合成技术来袭  

🔥 热点聚焦:法国AI实验室Kyutai正式开源高性能文本转语音模型Kyutai TTS,支持流式传输与低至350毫秒的延迟响应。该模型在英语与法语中词错误率分别低至2.82和3.29,说话者相似度达77.1%以上,广泛适用于虚拟助手、在线教育、媒体配音等实时交互场景。  
进展追踪:Kyutai呼吁社区贡献声音数据,计划扩展更多语言支持,推动全球语音合成技术发展。  
🔍 影响维度分析:  

实时交互显著提升语音生成速度与自然度,优化人机交互体验。  
应用拓展支持视障人士阅读、播客生成、字幕同步等多元应用场景,提升社会包容性。  
开源生态降低语音技术使用门槛,激发开发者创造力,推动语音合成技术普及。  

   ✨ 精彩呈现:


5. 昆仑万维开源Skywork-Reward-V2系列奖励模型,性能全面领先  

🔥 热点聚焦:昆仑万维发布第二代开源奖励模型Skywork-Reward-V2系列,涵盖8种不同参数规模模型,在七大主流评测榜单上全面领先。该系列基于4000万对混合偏好数据训练,具备高泛化性、安全性与抗偏差能力,适用于强化学习中的多维人类偏好对齐。  
进展追踪:最小模型Skywork-Reward-V2-Qwen3-0.6B性能接近上一代最强模型,最大模型Skywork-Reward-V2-Llama3.1-8B在所有基准测试中表现最佳。  
🔍 影响维度分析:  

模型优化提升奖励模型对真实质量因素的识别能力,减少虚假线索干扰,增强生成稳定性。  
数据质量采用人机协同两阶段筛选流程,有效平衡数据规模与标注精度,提升训练效率。  
开放生态推动开源奖励模型发展,为研究社区提供高质量基准模型,加速RLHF技术落地应用。

   ✨ 精彩呈现:


🚀 二、【最新AI引擎】

工具名称:AniSora

⚙️ 工具聚焦:AniSora 是 B 站开源的动漫视频生成系统,专为二次元内容优化,突破传统模型局限,助力高效动漫创作。
核心功能:整合 1000 万条高质量数据,覆盖多流派动画,确保生成内容高质量。支持图生视频、帧插值和局部引导,实现精准动画控制。通过 RLHF 提升生成内容自然度,发布评测数据集保障行业领先水平。
📌 影响分析:AniSora 降低创作门槛,支持零代码开发和适配硬件,推动技术普惠;构建从开发到变现的全链路支持,助力创作者;开源协作模式加速技术迭代,推动中国 AI 标准输出。


🔍 想持续追踪【人工智能】最新动态、深度解读行业报告?

关注[宁波威尔] 

  • 推送重要技术更新、峰会精华

  • 提供市场趋势分析与解读

  • 分享前沿工具、框架测评与应用实践

🌟 保持技术敏感度,快人一步掌握先机!

 

您可能感兴趣的与本文相关的镜像

HunyuanVideo-Foley

HunyuanVideo-Foley

语音合成

HunyuanVideo-Foley是由腾讯混元2025年8月28日宣布开源端到端视频音效生成模型,用户只需输入视频和文字,就能为视频匹配电影级音效

# ComfyUI Error Report ## Error Details - **Node ID:** 42 - **Node Type:** WanVideoSampler - **Exception Type:** AttributeError - **Exception Message:** 'WanModel' object has no attribute 'vace_patch_embedding' ## Stack Trace ``` File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 361, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 236, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 208, in _map_node_over_list process_inputs(input_dict, i) File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 197, in process_inputs results.append(getattr(obj, func)(**inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3325, in process noise_pred, self.cache_state = predict_with_cfg( ^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 2617, in predict_with_cfg noise_pred_cond, cache_state_cond = transformer( ^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1617, in forward vace_hints = self.forward_vace(x, data["context"], data["seq_len"], kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1196, in forward_vace c = [self.vace_patch_embedding(u.unsqueeze(0).float()).to(x.dtype) for u in vace_context] ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\diffusers\models\modeling_utils.py", line 291, in __getattr__ return super().__getattr__(name) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1940, in __getattr__ raise AttributeError( ``` ## System Information - **ComfyUI Version:** 0.3.43 - **Arguments:** ComfyUI\main.py --windows-standalone-build --listen 0.0.0.0 --enable-cors-header * - **OS:** nt - **Python Version:** 3.12.10 (tags/v3.12.10:0cc8128, Apr 8 2025, 12:21:36) [MSC v.1943 64 bit (AMD64)] - **Embedded Python:** true - **PyTorch Version:** 2.7.1+cu128 ## Devices - **Name:** cuda:0 NVIDIA GeForce RTX 3090 : cudaMallocAsync - **Type:** cuda - **VRAM Total:** 25769279488 - **VRAM Free:** 24347803648 - **Torch VRAM Total:** 67108864 - **Torch VRAM Free:** 50200576 ## Logs ``` 2025-07-24T17:17:54.612419 - 2025-07-24T17:17:54.663419 - INFO: IPAdapter model loaded from F:\ComfyUI_Mie_V6.0\ComfyUI\models\ipadapter\ip-adapter-plus_sd15.safetensors2025-07-24T17:17:54.663419 - 2025-07-24T17:17:54.663419 - end_vram - start_vram: 2537542306 - 2537542306 = 02025-07-24T17:17:54.663419 - 2025-07-24T17:17:54.664419 - #11 [IPAdapterUnifiedLoader]: 0.05s - vram 0b2025-07-24T17:17:54.664419 - 2025-07-24T17:17:54.924153 - end_vram - start_vram: 2639727650 - 2537542306 = 1021853442025-07-24T17:17:54.924153 - 2025-07-24T17:17:54.924670 - #10 [IPAdapterAdvanced]: 0.26s - vram 102185344b2025-07-24T17:17:54.924670 - 2025-07-24T17:17:54.931880 - end_vram - start_vram: 2733990564 - 2635766434 = 982241302025-07-24T17:17:54.931880 - 2025-07-24T17:17:54.931880 - #14 [RescaleCFG]: 0.01s - vram 98224130b2025-07-24T17:17:54.931880 - 2025-07-24T17:17:54.933882 - Requested to load BaseModel 2025-07-24T17:17:55.233473 - loaded completely 19197.46322517395 1639.406135559082 True 2025-07-24T17:18:23.076833 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.07it/s]2025-07-24T17:18:23.076833 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.08it/s]2025-07-24T17:18:23.076833 - 2025-07-24T17:18:23.078833 - end_vram - start_vram: 4711053742 - 2733990562 = 19770631802025-07-24T17:18:23.078833 - 2025-07-24T17:18:23.078833 - #3 [KSampler]: 28.15s - vram 1977063180b2025-07-24T17:18:23.078833 - 2025-07-24T17:18:23.711202 - end_vram - start_vram: 8100460554 - 3605411690 = 44950488642025-07-24T17:18:23.711239 - 2025-07-24T17:18:23.711239 - #8 [VAEDecode]: 0.63s - vram 4495048864b2025-07-24T17:18:23.711754 - 2025-07-24T17:18:23.864142 - end_vram - start_vram: 3605411690 - 3605411690 = 02025-07-24T17:18:23.864142 - 2025-07-24T17:18:23.864142 - #15 [SaveImage]: 0.15s - vram 0b2025-07-24T17:18:23.865143 - 2025-07-24T17:18:23.865143 - comfyui lumi batcher overwrite task done2025-07-24T17:18:23.865143 - 2025-07-24T17:18:23.866143 - Prompt executed in 31.05 seconds 2025-07-24T17:18:26.480125 - got prompt 2025-07-24T17:18:53.685302 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.14it/s]2025-07-24T17:18:53.686303 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.11it/s]2025-07-24T17:18:53.686303 - 2025-07-24T17:18:53.686303 - end_vram - start_vram: 4689507218 - 3605411690 = 10840955282025-07-24T17:18:53.686303 - 2025-07-24T17:18:53.687302 - #3 [KSampler]: 27.17s - vram 1084095528b2025-07-24T17:18:53.687302 - 2025-07-24T17:18:54.232028 - end_vram - start_vram: 8100460554 - 3605411690 = 44950488642025-07-24T17:18:54.232028 - 2025-07-24T17:18:54.233027 - #8 [VAEDecode]: 0.54s - vram 4495048864b2025-07-24T17:18:54.233027 - 2025-07-24T17:18:54.380027 - end_vram - start_vram: 3605411690 - 3605411690 = 02025-07-24T17:18:54.380027 - 2025-07-24T17:18:54.380027 - #15 [SaveImage]: 0.15s - vram 0b2025-07-24T17:18:54.380027 - 2025-07-24T17:18:54.381027 - comfyui lumi batcher overwrite task done2025-07-24T17:18:54.382027 - 2025-07-24T17:18:54.385027 - Prompt executed in 27.90 seconds 2025-07-24T17:24:25.352704 - got prompt 2025-07-24T17:24:25.445704 - end_vram - start_vram: 3507187562 - 3507187562 = 02025-07-24T17:24:25.446704 - 2025-07-24T17:24:25.446704 - #20 [LoraLoader]: 0.05s - vram 0b2025-07-24T17:24:25.446704 - 2025-07-24T17:24:25.447704 - Requested to load SD1ClipModel 2025-07-24T17:24:25.792290 - loaded completely 18695.929541397094 235.84423828125 True 2025-07-24T17:24:25.800290 - end_vram - start_vram: 3521486046 - 3507187562 = 142984842025-07-24T17:24:25.800290 - 2025-07-24T17:24:25.800290 - #7 [CLIPTextEncode]: 0.35s - vram 14298484b2025-07-24T17:24:25.800290 - 2025-07-24T17:24:25.808290 - end_vram - start_vram: 3519593078 - 3507187562 = 124055162025-07-24T17:24:25.808290 - 2025-07-24T17:24:25.809290 - #6 [CLIPTextEncode]: 0.01s - vram 12405516b2025-07-24T17:24:25.809290 - 2025-07-24T17:24:25.810290 - end_vram - start_vram: 3507187562 - 3507187562 = 02025-07-24T17:24:25.810290 - 2025-07-24T17:24:25.810290 - #11 [IPAdapterUnifiedLoader]: 0.00s - vram 0b2025-07-24T17:24:25.810290 - 2025-07-24T17:24:26.053290 - end_vram - start_vram: 3609372906 - 3507187562 = 1021853442025-07-24T17:24:26.053290 - 2025-07-24T17:24:26.054290 - #10 [IPAdapterAdvanced]: 0.24s - vram 102185344b2025-07-24T17:24:26.054290 - 2025-07-24T17:24:26.059290 - end_vram - start_vram: 3703635820 - 3605411690 = 982241302025-07-24T17:24:26.059290 - 2025-07-24T17:24:26.060290 - #14 [RescaleCFG]: 0.01s - vram 98224130b2025-07-24T17:24:26.060290 - 2025-07-24T17:24:26.061290 - Requested to load BaseModel 2025-07-24T17:24:26.644908 - loaded completely 19912.1512134552 1639.406135559082 True 2025-07-24T17:24:53.885378 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.08it/s]2025-07-24T17:24:53.885378 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:27<00:00, 1.10it/s]2025-07-24T17:24:53.885378 - 2025-07-24T17:24:53.886378 - end_vram - start_vram: 4689507218 - 3703635818 = 9858714002025-07-24T17:24:53.886378 - 2025-07-24T17:24:53.886378 - #3 [KSampler]: 27.83s - vram 985871400b2025-07-24T17:24:53.887378 - 2025-07-24T17:24:54.482797 - end_vram - start_vram: 8100460554 - 3605411690 = 44950488642025-07-24T17:24:54.482797 - 2025-07-24T17:24:54.482797 - #8 [VAEDecode]: 0.60s - vram 4495048864b2025-07-24T17:24:54.482797 - 2025-07-24T17:24:54.640169 - end_vram - start_vram: 3605411690 - 3605411690 = 02025-07-24T17:24:54.640169 - 2025-07-24T17:24:54.640169 - #15 [SaveImage]: 0.16s - vram 0b2025-07-24T17:24:54.640169 - 2025-07-24T17:24:54.641169 - comfyui lumi batcher overwrite task done2025-07-24T17:24:54.641169 - 2025-07-24T17:24:54.643410 - Prompt executed in 29.28 seconds 2025-07-24T17:25:09.991282 - got prompt 2025-07-24T17:25:10.085282 - end_vram - start_vram: 3507187562 - 3507187562 = 02025-07-24T17:25:10.085282 - 2025-07-24T17:25:10.085282 - #20 [LoraLoader]: 0.05s - vram 0b2025-07-24T17:25:10.085282 - 2025-07-24T17:25:10.086282 - Requested to load SD1ClipModel 2025-07-24T17:25:10.369134 - loaded completely 18695.929541397094 235.84423828125 True 2025-07-24T17:25:10.377134 - end_vram - start_vram: 3521486046 - 3507187562 = 142984842025-07-24T17:25:10.377134 - 2025-07-24T17:25:10.377134 - #7 [CLIPTextEncode]: 0.29s - vram 14298484b2025-07-24T17:25:10.377134 - 2025-07-24T17:25:10.385134 - end_vram - start_vram: 3519593078 - 3507187562 = 124055162025-07-24T17:25:10.385134 - 2025-07-24T17:25:10.385134 - #6 [CLIPTextEncode]: 0.01s - vram 12405516b2025-07-24T17:25:10.385134 - 2025-07-24T17:25:10.386135 - end_vram - start_vram: 3507187562 - 3507187562 = 02025-07-24T17:25:10.386135 - 2025-07-24T17:25:10.386135 - #11 [IPAdapterUnifiedLoader]: 0.00s - vram 0b2025-07-24T17:25:10.386135 - 2025-07-24T17:25:10.631046 - end_vram - start_vram: 3609372906 - 3507187562 = 1021853442025-07-24T17:25:10.631046 - 2025-07-24T17:25:10.631046 - #10 [IPAdapterAdvanced]: 0.24s - vram 102185344b2025-07-24T17:25:10.631046 - 2025-07-24T17:25:10.637046 - end_vram - start_vram: 3703635820 - 3605411690 = 982241302025-07-24T17:25:10.637046 - 2025-07-24T17:25:10.637046 - #14 [RescaleCFG]: 0.01s - vram 98224130b2025-07-24T17:25:10.637046 - 2025-07-24T17:25:10.639047 - Requested to load BaseModel 2025-07-24T17:25:11.180881 - loaded completely 19912.1512134552 1639.406135559082 True 2025-07-24T17:25:39.272121 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:28<00:00, 1.08it/s]2025-07-24T17:25:39.272121 - 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:28<00:00, 1.07it/s]2025-07-24T17:25:39.272121 - 2025-07-24T17:25:39.273121 - end_vram - start_vram: 4689507218 - 3703635818 = 9858714002025-07-24T17:25:39.273121 - 2025-07-24T17:25:39.274121 - #3 [KSampler]: 28.64s - vram 985871400b2025-07-24T17:25:39.274121 - 2025-07-24T17:25:39.888702 - end_vram - start_vram: 8100460554 - 3605411690 = 44950488642025-07-24T17:25:39.888702 - 2025-07-24T17:25:39.888702 - #8 [VAEDecode]: 0.61s - vram 4495048864b2025-07-24T17:25:39.888702 - 2025-07-24T17:25:40.051703 - end_vram - start_vram: 3605411690 - 3605411690 = 02025-07-24T17:25:40.051703 - 2025-07-24T17:25:40.051703 - #15 [SaveImage]: 0.16s - vram 0b2025-07-24T17:25:40.051703 - 2025-07-24T17:25:40.052703 - comfyui lumi batcher overwrite task done2025-07-24T17:25:40.052703 - 2025-07-24T17:25:40.060703 - Prompt executed in 30.06 seconds 2025-07-24T17:43:56.476860 - got prompt 2025-07-24T17:43:57.039587 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:43:57.039587 - 2025-07-24T17:43:57.039587 - #7 [WanVideoVAELoader]: 0.48s - vram 0b2025-07-24T17:43:57.040588 - 2025-07-24T17:43:57.040588 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:43:57.040588 - 2025-07-24T17:43:57.040588 - #12 [WanVideoExperimentalArgs]: 0.00s - vram 0b2025-07-24T17:43:57.040588 - 2025-07-24T17:43:57.041588 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:43:57.041588 - 2025-07-24T17:43:57.041588 - #10 [WanVideoEnhanceAVideo]: 0.00s - vram 0b2025-07-24T17:43:57.041588 - 2025-07-24T17:43:57.042588 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:43:57.042588 - 2025-07-24T17:43:57.042588 - #21 [WanVideoVACEModelSelect]: 0.00s - vram 0b2025-07-24T17:43:57.042588 - 2025-07-24T17:44:00.282807 - Detected model in_channels: 36 2025-07-24T17:44:00.282807 - Model type: fl2v, num_heads: 40, num_layers: 40 2025-07-24T17:44:00.283807 - Model variant detected: i2v_720 2025-07-24T17:44:00.596667 - model_type FLOW 2025-07-24T17:44:00.597701 - Using accelerate to load and assign model weights to device... 2025-07-24T17:44:00.801188 - Loading transformer parameters to cpu: 83%|██████████████████████████████▋ | 1080/1304 [00:00<00:00, 5458.86it/s]2025-07-24T17:44:00.839187 - Loading transformer parameters to cpu: 100%|█████████████████████████████████████| 1304/1304 [00:00<00:00, 5446.33it/s]2025-07-24T17:44:00.839187 - 2025-07-24T17:44:00.844187 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:44:00.844187 - 2025-07-24T17:44:00.844187 - #22 [WanVideoModelLoader]: 3.80s - vram 0b2025-07-24T17:44:00.844187 - 2025-07-24T17:44:02.947231 - end_vram - start_vram: 106744016 - 106744016 = 02025-07-24T17:44:02.948230 - 2025-07-24T17:44:02.948230 - #6 [LoadWanVideoT5TextEncoder]: 2.10s - vram 0b2025-07-24T17:44:02.948230 - 2025-07-24T17:44:02.948230 - Moving video model to cpu 2025-07-24T17:45:21.569551 - end_vram - start_vram: 11728619736 - 106744016 = 116218757202025-07-24T17:45:21.569558 - 2025-07-24T17:45:21.569558 - #8 [WanVideoTextEncode]: 78.62s - vram 11621875720b2025-07-24T17:45:21.569558 - 2025-07-24T17:45:21.624655 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.625215 - 2025-07-24T17:45:21.625215 - #34 [LoadImage]: 0.05s - vram 0b2025-07-24T17:45:21.625215 - 2025-07-24T17:45:21.626235 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.626242 - 2025-07-24T17:45:21.626242 - #19 [INTConstant]: 0.00s - vram 0b2025-07-24T17:45:21.626242 - 2025-07-24T17:45:21.671234 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.671234 - 2025-07-24T17:45:21.671234 - #24 [ImageResizeKJ]: 0.04s - vram 0b2025-07-24T17:45:21.671234 - 2025-07-24T17:45:21.738079 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.738592 - 2025-07-24T17:45:21.739108 - #30 [ImageResizeKJ]: 0.07s - vram 0b2025-07-24T17:45:21.739108 - 2025-07-24T17:45:21.782786 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.782786 - 2025-07-24T17:45:21.782786 - #35 [ImageResizeKJ]: 0.04s - vram 0b2025-07-24T17:45:21.782786 - 2025-07-24T17:45:21.915384 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.915902 - 2025-07-24T17:45:21.915902 - #29 [WanVideoVACEStartToEndFrame]: 0.13s - vram 0b2025-07-24T17:45:21.915902 - 2025-07-24T17:45:21.916414 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.916918 - 2025-07-24T17:45:21.917002 - #40 [GetImageRangeFromBatch]: 0.00s - vram 0b2025-07-24T17:45:21.917002 - 2025-07-24T17:45:21.981944 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.981944 - 2025-07-24T17:45:21.981944 - #25 [WanVideoVACEStartToEndFrame]: 0.06s - vram 0b2025-07-24T17:45:21.981944 - 2025-07-24T17:45:21.995235 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:21.995235 - 2025-07-24T17:45:21.995235 - #41 [MaskBatchMulti]: 0.01s - vram 0b2025-07-24T17:45:21.995235 - 2025-07-24T17:45:22.039203 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:22.039203 - 2025-07-24T17:45:22.039203 - #37 [ImageBatchMulti]: 0.04s - vram 0b2025-07-24T17:45:22.039708 - 2025-07-24T17:45:22.039713 - end_vram - start_vram: 115132624 - 115132624 = 02025-07-24T17:45:22.040227 - 2025-07-24T17:45:22.040227 - #26 [GetImageSizeAndCount]: 0.00s - vram 0b2025-07-24T17:45:22.040227 - 2025-07-24T17:45:22.883828 - input_masks shape2025-07-24T17:45:22.883828 - 2025-07-24T17:45:22.884341 - torch.Size([81, 496, 896])2025-07-24T17:45:22.884341 - 2025-07-24T17:45:34.863567 - VAE encoding: 100%|██████████████████████████████████████████████████████████████████████| 9/9 [00:11<00:00, 1.30s/it]2025-07-24T17:45:34.863567 - VAE encoding: 100%|██████████████████████████████████████████████████████████████████████| 9/9 [00:11<00:00, 1.32s/it]2025-07-24T17:45:34.864077 - 2025-07-24T17:45:46.589102 - VAE encoding: 100%|██████████████████████████████████████████████████████████████████████| 9/9 [00:11<00:00, 1.30s/it]2025-07-24T17:45:46.589612 - VAE encoding: 100%|██████████████████████████████████████████████████████████████████████| 9/9 [00:11<00:00, 1.30s/it]2025-07-24T17:45:46.589612 - 2025-07-24T17:45:46.600743 - refs shape2025-07-24T17:45:46.600743 - 2025-07-24T17:45:46.600743 - torch.Size([1, 3, 1, 496, 896])2025-07-24T17:45:46.600743 - 2025-07-24T17:45:46.715123 - VAE encoding: 56%|██████████████████████████████████████▉ | 5/9 [00:00<00:00, 44.31it/s]2025-07-24T17:45:46.805051 - VAE encoding: 100%|██████████████████████████████████████████████████████████████████████| 9/9 [00:00<00:00, 44.38it/s]2025-07-24T17:45:46.805583 - 2025-07-24T17:45:46.870662 - end_vram - start_vram: 2252473238 - 115132624 = 21373406142025-07-24T17:45:46.870662 - 2025-07-24T17:45:46.871171 - #16 [WanVideoVACEEncode]: 24.83s - vram 2137340614b2025-07-24T17:45:46.871171 - 2025-07-24T17:45:46.873216 - timesteps: tensor([1000.0000, 983.7124, 964.5367, 941.6301, 913.7864, 879.2166, 835.1485, 777.0445, 696.9283, 579.3684, 390.1099, 34.7826], device='cuda:0') 2025-07-24T17:45:46.887141 - Seq len: 38192 2025-07-24T17:49:31.510530 - Sampling 85 frames at 896x496 with 12 steps 2025-07-24T17:49:37.849674 - 0%| | 0/12 [00:00<?, ?it/s]2025-07-24T17:49:44.296375 - 0%| | 0/12 [00:06<?, ?it/s]2025-07-24T17:49:44.297376 - 2025-07-24T17:49:44.747159 - !!! Exception during processing !!! 'WanModel' object has no attribute 'vace_patch_embedding' 2025-07-24T17:49:44.783076 - Traceback (most recent call last): File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 361, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 236, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 208, in _map_node_over_list process_inputs(input_dict, i) File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 197, in process_inputs results.append(getattr(obj, func)(**inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3325, in process noise_pred, self.cache_state = predict_with_cfg( ^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 2617, in predict_with_cfg noise_pred_cond, cache_state_cond = transformer( ^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1617, in forward vace_hints = self.forward_vace(x, data["context"], data["seq_len"], kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1196, in forward_vace c = [self.vace_patch_embedding(u.unsqueeze(0).float()).to(x.dtype) for u in vace_context] ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\diffusers\models\modeling_utils.py", line 291, in __getattr__ return super().__getattr__(name) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1940, in __getattr__ raise AttributeError( AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'. Did you mean: 'patch_embedding'? 2025-07-24T17:49:44.785980 - end_vram - start_vram: 34183609272 - 173795536 = 340098137362025-07-24T17:49:44.785980 - 2025-07-24T17:49:44.785980 - #42 [WanVideoSampler]: 237.91s - vram 34009813736b2025-07-24T17:49:44.785980 - 2025-07-24T17:49:44.798561 - comfyui lumi batcher overwrite task done2025-07-24T17:49:44.798968 - 2025-07-24T17:49:44.868694 - Prompt executed in 348.38 seconds 2025-07-24T18:17:32.104770 - [ComfyUI-Manager] The ComfyRegistry cache update is still in progress, so an outdated cache is being used.2025-07-24T18:17:32.105296 - 2025-07-24T18:17:33.147891 - FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/custom-node-list.json2025-07-24T18:17:33.147891 - 2025-07-24T18:17:36.036752 - [DONE]2025-07-24T18:17:36.036752 - 2025-07-24T18:17:36.120191 - FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/github-stats.json2025-07-24T18:17:36.120191 - 2025-07-24T18:17:37.292226 - [DONE]2025-07-24T18:17:37.292226 - 2025-07-24T18:17:37.313785 - FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/extras.json2025-07-24T18:17:37.313785 - 2025-07-24T18:17:38.420206 - [DONE]2025-07-24T18:17:38.420897 - 2025-07-24T18:17:38.602146 - FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/extension-node-map.json2025-07-24T18:17:38.602146 - 2025-07-24T18:17:39.726647 - [DONE]2025-07-24T18:17:39.726647 - 2025-07-24T18:21:32.720524 - got prompt 2025-07-24T18:21:36.403235 - timesteps: tensor([1000.0000, 983.7124, 964.5367, 941.6301, 913.7864, 879.2166, 835.1485, 777.0445, 696.9283, 579.3684, 390.1099, 34.7826], device='cuda:0') 2025-07-24T18:21:36.571239 - Seq len: 38192 2025-07-24T18:21:36.578239 - Sampling 85 frames at 896x496 with 12 steps 2025-07-24T18:21:36.834814 - 0%| | 0/12 [00:00<?, ?it/s]2025-07-24T18:21:40.522225 - 0%| | 0/12 [00:03<?, ?it/s]2025-07-24T18:21:40.522225 - 2025-07-24T18:21:40.567079 - !!! Exception during processing !!! 'WanModel' object has no attribute 'vace_patch_embedding' 2025-07-24T18:21:40.572236 - Traceback (most recent call last): File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 361, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 236, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 208, in _map_node_over_list process_inputs(input_dict, i) File "F:\ComfyUI_Mie_V6.0\ComfyUI\execution.py", line 197, in process_inputs results.append(getattr(obj, func)(**inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3325, in process noise_pred, self.cache_state = predict_with_cfg( ^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 2617, in predict_with_cfg noise_pred_cond, cache_state_cond = transformer( ^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1617, in forward vace_hints = self.forward_vace(x, data["context"], data["seq_len"], kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\wanvideo\modules\model.py", line 1196, in forward_vace c = [self.vace_patch_embedding(u.unsqueeze(0).float()).to(x.dtype) for u in vace_context] ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\diffusers\models\modeling_utils.py", line 291, in __getattr__ return super().__getattr__(name) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ComfyUI_Mie_V6.0\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1940, in __getattr__ raise AttributeError( AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'. Did you mean: 'patch_embedding'? 2025-07-24T18:21:40.574784 - end_vram - start_vram: 34183609272 - 32966353744 = 12172555282025-07-24T18:21:40.574784 - 2025-07-24T18:21:40.575297 - #42 [WanVideoSampler]: 7.68s - vram 1217255528b2025-07-24T18:21:40.575297 - 2025-07-24T18:21:40.575811 - comfyui lumi batcher overwrite task done2025-07-24T18:21:40.575811 - 2025-07-24T18:21:40.577866 - Prompt executed in 7.84 seconds ``` ## Attached Workflow Please make sure that workflow does not contain any sensitive information such as API keys or passwords. ``` Workflow too large. Please manually upload the workflow from local file system. ``` ## Additional Context (Please add any additional context or steps to reproduce the error here) 什么问题,该怎么解决
07-25
<think>首先,用户的问题是关于ComfyUI中的错误:"AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'"。错误发生在使用WanVideoSampler节点时。 我需要回忆一下之前的对话。用户提到过类似的问题,比如引用[1]和引用[2],但那些是之前的错误,不是直接相关的。引用[1]是关于"NoneType' object has no attribute 'lower'"的,引用[2]是关于"AttributeError: 'Model' object has no attribute '_place'"的。这些只是参考,不是当前问题。 用户当前的问题具体是:"ComfyUI WanVideoSampler AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'"。 我的系统级指令要求: - 所有行内数学表达式用$...$格式。 - 独立公式用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾添加引用标识。 用户可见层要求: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 所以,我需要构建一个结构清晰的回答: 1. **理解错误**:解释这个错误是什么。 2. **可能原因**:分析为什么会出现这个错误。 3. **解决方案**:提供解决这个错误的步骤。 4. **生成相关问题**:在最后添加相关问题。 错误信息:"AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'" 表明在WanModel对象上尝试访问一个名为'vace_patch_embedding'的属性,但这个属性不存在。这可能是由于代码版本不匹配、模型文件损坏或配置错误导致的。 从用户提供的引用来看: - 引用[1]提到导入工作流时检查模型名称和是否存在。 - 引用[2]提到加载模型权重时出现属性错误,建议检查模型保存和加载的方式。 因此,可能的原因包括: - 模型文件缺失或不完整。 - ComfyUI或特定节点的版本问题。 - 工作流配置错误。 解决方案步骤: 1. **检查模型文件**:确保所有必要的模型文件都已下载并放置在正确的目录中。引用[1]建议检查模型是否存在。 2. **更新节点或ComfyUI**:可能是节点版本过旧或与新版本不兼容。 3. **检查工作流**:验证工作流中的参数设置是否正确。 4. **查看志**:运行ComfyUI时查看详细志以获取更多线索。 5. **重新安装节点**:如果问题持续,尝试重新安装WanVideoSampler节点。 由于这是一个具体错误,我需要基于一般知识推理。在AI或模型加载中,属性错误通常表示模型结构不匹配。 生成相关问题: 1. 如何正确安装和配置WanVideoSampler节点? 2. ComfyUI中常见模型加载错误的解决方法是什么? 3. 如何更新ComfyUI和其节点到最新版本? 最后,确保回答用中文。</think>### 解决ComfyUI中WanVideoSampler节点的AttributeError错误 您遇到的错误信息是:`AttributeError: 'WanModel' object has no attribute 'vace_patch_embedding'`。这表示在运行WanVideoSampler节点时,ComfyUI尝试访问`WanModel`对象的一个属性`vace_patch_embedding`,但该属性不存在。这通常是由于模型文件不匹配、节点版本过旧或工作流配置错误引起的。下面我将逐步解释原因并提供解决方案,帮助您修复问题。回答基于类似错误的常见解决模式(如模型加载或属性缺失问题)[^1][^2]。 #### 1. **错误原因分析** - **模型文件问题**:最常见原因是模型文件(如`.pth`或`.ckpt`文件)损坏、不完整或版本不兼容。例如: - 模型文件未正确下载或存放位置错误。 - 模型结构已更新,但您使用的旧版本节点无法识别新属性(如`vace_patch_embedding`)。 - **节点版本不匹配**:WanVideoSampler节点可能过旧,与当前ComfyUI版本或模型文件不兼容。属性`vace_patch_embedding`可能是新版本模型引入的,但旧节点代码未包含它。 - **工作流配置错误**:导入的工作流参数设置不正确,例如模型名称拼写错误或路径无效(参考引用[1])。 - **环境问题**:Python依赖项(如PyTorch)版本冲突,导致模型加载时属性解析失败。 根据引用[2],类似属性错误(如`no attribute '_place'`)常发生在模型加载阶段,需检查模型保存和加载的一致性[^2]。 #### 2. **逐步解决方案** 请按顺序尝试以下步骤,确保操作前备份ComfyUI工作流和模型文件。 **步骤 1: 检查模型文件** - 确认模型文件是否存在且完整: - 打开ComfyUI的模型目录(通常为`ComfyUI/models/`下的子文件夹,如`checkpoints`)。 - 检查WanVideoSampler所需的模型文件(如`wan_model.pth`)是否已下载。如果缺失,从官方源重新下载并放置到正确位置。 - 验证模型名称和路径在工作流中的设置:在ComfyUI界面中,双击WanVideoSampler节点,确保“Model Name”参数与文件名完全一致(区分大小写)。 - 如果模型文件损坏,重新下载它。您可以从Hugging Face或模型作者的GitHub页面获取。 **步骤 2: 更新节点和ComfyUI** - 过时的节点可能导致属性缺失: - 更新WanVideoSampler节点: - 在ComfyUI根目录运行命令(假设节点通过Git管理): ```bash cd custom_nodes/WanVideoSampler # 进入节点目录 git pull origin main # 拉取最新代码 ``` - 如果节点通过ComfyUI管理器安装,在管理器界面检查更新。 - 更新ComfyUI主程序: ```bash cd ComfyUI git pull origin main ``` - 重启ComfyUI服务后测试工作流。 **步骤 3: 检查工作流配置** - 重新导入工作流并验证参数: - 在ComfyUI中,打开工作流JSON文件,搜索`WanVideoSampler`节点部分。 - 确保所有参数(如模型名称、输入尺寸)正确无误。常见错误包括路径错误或模型类型不匹配。 - 如果工作流是从他人处导入的,确保您拥有相同版本的模型(参考引用[1])[^1]。 **步骤 4: 查看志并调试** - 运行ComfyUI时启用详细志: ```bash python main.py --log-level DEBUG ``` -志中搜索`AttributeError`或`vace_patch_embedding`,定位错误发生的具体代码行。 - 如果志显示模型加载失败,尝试简化工作流:仅保留WanVideoSampler节点和必要输入,排除其他干扰。 **步骤 5: 重新安装节点或模型** - 如果以上步骤无效: - 卸载并重新安装WanVideoSampler节点: ```bash # 删除节点目录 rm -rf custom_nodes/WanVideoSampler # 重新克隆(假设Git仓库) git clone https://github.com/author/WanVideoSampler.git custom_nodes/WanVideoSampler ``` - 重新下载模型文件:从官方源获取最新版本,替换旧文件。 #### 3. **预防措施** - **定期更新**:保持ComfyUI和所有节点为最新版本,避免兼容性问题。 - **模型管理**:使用模型管理器工具(如ComfyUI Manager)确保文件完整性。 - **文档参考**:查阅WanVideoSampler的官方文档或GitHub Issues,确认`vace_patch_embedding`属性的引入版本。 如果问题仍未解决,请提供更多细节(如ComfyUI版本、模型来源和错误志),我可以进一步协助分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值