poj1050 二维最大字段和

该问题要求在给定的二维整数数组中找到和最大的子矩形。最大子矩阵和可以通过枚举所有可能的行组合并计算新行的最大和来求解。对于4x4的输入数组,输出为15。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1

8 0 -2
Sample Output
15

其实就是暴力一个最大字段和。。
本身最大字段和是求一行的
这个要求一个最大的矩形

那么你就枚举每一个可能出现的行…、
比如1到3,1到4全都叠加完了成为一个新的行
对新的行最大字段和就可以了..

之前我竟然往区间dp上想..
有点傻逼

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int tu[101][101];
int main()
{
    int n;
    cin >> n;
    int da = -100000000;
    for (int a = 1; a <= n; a++)
    {
        int tem = -10000000;
        for (int b = 1; b <= n; b++)
        {
            scanf("%d", &tu[a][b]);
            if (tem > 0)tem += tu[a][b];
            else tem = tu[a][b];
            da = max(da, tem);
        }
    }
    for (int a = 1; a <= n; a++)
    {
        for (int b = a + 1; b <= n; b++)
        {
            int tem = -1000000;
            for (int c = 1; c <= n; c++)
            {
                tu[a][c] += tu[b][c];
                if (tem > 0)tem += tu[a][c];
                else tem = tu[a][c];
                da = max(tem, da);
            }
        }
    }
    cout << da;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值