HDU5025 状压+BFS

本文介绍了一个基于《西游记》中孙悟空救师傅情景的迷宫挑战问题,通过搜索算法寻找最短路径来获取所有钥匙并救出师傅。

Description
《Journey to the West》(also 《Monkey》) is one of the Four Great Classical Novels of Chinese literature. It was written by Wu Cheng’en during the Ming Dynasty. In this novel, Monkey King Sun Wukong, pig Zhu Bajie and Sha Wujing, escorted Tang Monk to India to get sacred Buddhism texts.

During the journey, Tang Monk was often captured by demons. Most of demons wanted to eat Tang Monk to achieve immortality, but some female demons just wanted to marry him because he was handsome. So, fighting demons and saving Monk Tang is the major job for Sun Wukong to do.

Once, Tang Monk was captured by the demon White Bones. White Bones lived in a palace and she cuffed Tang Monk in a room. Sun Wukong managed to get into the palace. But to rescue Tang Monk, Sun Wukong might need to get some keys and kill some snakes in his way.

The palace can be described as a matrix of characters. Each character stands for a room. In the matrix, ‘K’ represents the original position of Sun Wukong, ‘T’ represents the location of Tang Monk and ‘S’ stands for a room with a snake in it. Please note that there are only one ‘K’ and one ‘T’, and at most five snakes in the palace. And, ‘.’ means a clear room as well ‘#’ means a deadly room which Sun Wukong couldn’t get in.

There may be some keys of different kinds scattered in the rooms, but there is at most one key in one room. There are at most 9 kinds of keys. A room with a key in it is represented by a digit(from ‘1’ to ‘9’). For example, ‘1’ means a room with a first kind key, ‘2’ means a room with a second kind key, ‘3’ means a room with a third kind key… etc. To save Tang Monk, Sun Wukong must get ALL kinds of keys(in other words, at least one key for each kind).

For each step, Sun Wukong could move to the adjacent rooms(except deadly rooms) in 4 directions(north, west, south and east), and each step took him one minute. If he entered a room in which a living snake stayed, he must kill the snake. Killing a snake also took one minute. If Sun Wukong entered a room where there is a key of kind N, Sun would get that key if and only if he had already got keys of kind 1,kind 2 … and kind N-1. In other words, Sun Wukong must get a key of kind N before he could get a key of kind N+1 (N>=1). If Sun Wukong got all keys he needed and entered the room in which Tang Monk was cuffed, the rescue mission is completed. If Sun Wukong didn’t get enough keys, he still could pass through Tang Monk’s room. Since Sun Wukong was a impatient monkey, he wanted to save Tang Monk as quickly as possible. Please figure out the minimum time Sun Wukong needed to rescue Tang Monk.
Input
There are several test cases.

For each case, the first line includes two integers N and M(0 < N <= 100, 0<=M<=9), meaning that the palace is a N×N matrix and Sun Wukong needed M kinds of keys(kind 1, kind 2, … kind M).

Then the N × N matrix follows.

The input ends with N = 0 and M = 0.
Output
For each test case, print the minimum time (in minutes) Sun Wukong needed to save Tang Monk. If it’s impossible for Sun Wukong to complete the mission, print “impossible”(no quotes).
Sample Input
3 1
K.S

1

1#T
3 1
K#T
.S#
1#.
3 2
K#T
.S.
21.
0 0
Sample Output
5
impossible
8

其实就是属性多一点的搜索…
蛇因为数量多少杀没杀过可以用状态压缩….
前面的都很简单就是有一个地方我卡了很久…
那就是如何杜绝一个地方反复走
1212121212121212121
就这种走法
试了好多种,第一个限制走到T的次数,但是没用
时间限制住了但是内存会炸
第二个限制同一个地方走的次数,内存限制了时间会炸
如果限制的太少了还会WA
上面两个都被排除了

最后的成功的方法就是用空间来记录,如果这个不是更优的
根本就可以不入队
这样就剩下了大量的空间

#include<iostream>
#include<queue>
#include<algorithm>
#include<cstdio>
#include<memory.h>
#include<string>
using namespace std;
struct p
{
    int x, y, yaoshi, shijian, she;
};
int n, m, inf = 0x3f3f3f3f;
p kaishi;
string tu[100];
int tut[101][101];
int xing[110][110][10][50];
int xingzou[4][2] = { { 0,1 },{ 1,0 },{ -1,0 },{ 0,-1 } };
int main()
{
    while (cin >> n >> m)
    {
        if (n + m == 0)break;
        memset(xing, 0x3f, sizeof(xing));
        for (int a = 0;a<n;a++)cin >> tu[a];
        int she = 0;
        int jx, jy;
        for (int a = 0;a<n;a++)
        {
            for (int b = 0;b<n;b++)
            {
                if (tu[a][b] == '.' || tu[a][b] == '#')tut[a + 1][b + 1] = tu[a][b];
                else if (tu[a][b] == 'K')kaishi = { a + 1,b + 1,0,0,0 }, tut[a + 1][b + 1] = 'K';
                else if (tu[a][b] == 'S')
                {
                    tut[a + 1][b + 1] = 'A' + she;
                    she++;
                }
                else if (tu[a][b]>'0'&&tu[a][b] <= '9')tut[a + 1][b + 1] = tu[a][b] - '0';
                else if (tu[a][b] == 'T')jx = a + 1, jy = b + 1, tut[a + 1][b + 1] = tu[a][b];
                else tut[a + 1][b + 1] = tu[a][b];
            }
        }
        queue<p>bfs;
        bfs.push(kaishi);
        int sum = inf;
        int yyy = 0;
        while (!bfs.empty())
        {
            p qq = bfs.front();
            bfs.pop();
            if (tut[qq.x][qq.y] == 'T'&&qq.yaoshi == m)
            {
                sum = min(sum, qq.shijian);
                continue;
            } 
            for (int a = 0;a<4;a++)
            {
                int xx = qq.x + xingzou[a][0];
                int yy = qq.y + xingzou[a][1];
                if (xx<1 || xx>n || yy<1 || yy>n)continue;
                p ou;
                if (tut[xx][yy] == '#')continue;
                else if (tut[xx][yy] == qq.yaoshi + 1 )ou={ xx,yy,qq.yaoshi + 1,qq.shijian + 1,qq.she };
                else if (tut[xx][yy] >= 'A'&&tut[xx][yy]<'J')
                {
                    int ga = 1 << (tut[xx][yy] - 'A');
                    if (ga&qq.she)ou={ xx,yy,qq.yaoshi,qq.shijian + 1,qq.she };
                    else ou={ xx,yy,qq.yaoshi,qq.shijian + 2,qq.she | ga };
                }
                else
                {
                        ou={ xx,yy,qq.yaoshi,qq.shijian + 1,qq.she };
                }
                if (xing[ou.x][ou.y][ou.yaoshi][ou.she]>ou.shijian)
                {
                    xing[ou.x][ou.y][ou.yaoshi][ou.she] = ou.shijian;
                    bfs.push(ou);
                }
            }
        }
        if (sum == inf)cout << "impossible" << endl;
        else cout << sum << endl;
    }
    return 0;
}
六、DP的优化技巧 6.1 预处理合法态 很多问题中,大部分态是不合法的,可以预先筛选: cpp vector valid_states; for (int state = 0; state < (1 << n); ++state) { if (check(state)) { // 检查state是否合法 valid_states.push_back(state); } } 6.2 滚动数组优化 当态只依赖前一个阶段时,可以节省空间: cpp vector<vector> dp(2, vector(size)); // 只保留当前和上一个态 int now = 0, prev = 1; for (int i = 1; i <= n; ++i) { swap(now, prev); for (auto& state : valid_states) { dp[now][state] = 0; // 清空当前态 // 态转移… } } 6.3 记忆化搜索实现 有时递归形式更直观: cpp int memo[1<<20][20]; // 记忆化数组 int dfs(int state, int u) { if (memo[state][u] != -1) return memo[state][u]; // 递归处理… return memo[state][u] = res; } 七、常见问题与调试技巧 7.1 常见错误 位运算优先级:总是加括号,如(state & (1 << i)) 数组越界:态数是2ⁿ,不是n 初始态设置错误:比如TSP中dp[1][0] = 0 边界条件处理不当:如全选态是(1<<n)-1,不是1<<n 7.2 调试建议 打印中间态:将二进制态转换为可视化的形式 cpp void printState(int state, int n) { for (int i = n-1; i >= 0; --i) cout << ((state >> i) & 1); cout << endl; } 从小规模测试用例开始(如n=3,4) 使用assert检查关键假设 八、学习路线建议 初级阶段: 练习基本位操作 解决简单问题(如LeetCode 464、526题) 中级阶段: 掌握经典模型(TSP、棋盘覆盖) 学习优化技巧(预处理、滚动数组) 高级阶段: 处理高维(如需要同时缩多个态) 结合其他算法(如BFS、双指针) 九、实战练习题目推荐 入门题: LeetCode 78. Subsets(理解态表示) LeetCode 464. Can I Win(简单DP) 中等题: LeetCode 526. Beautiful Arrangement LeetCode 691. Stickers to Spell Word 经典题: POJ 2411. Mondriaan’s Dream(棋盘覆盖) HDU 3001. Travelling(三进制) 挑战题: Codeforces 8C. Looking for Order Topcoder SRM 556 Div1 1000. LeftRightDigitsGame2 记住,掌握DP的关键在于: 彻底理解二进制态表示 熟练运用位运算 通过大量练习培养直觉 希望这份超详细的教程能帮助你彻底掌握DP!如果还有任何不明白的地方,可以针对具体问题继续深入探讨。 请帮我转成markdown语法输出,谢谢
最新发布
08-13
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值