HDU1195弱智广搜

本文介绍了一种解决特定类型密码锁问题的算法。该算法使用队列和标记方法来找到打开四数字密码锁所需的最小步骤数。通过递增或递减每个数字,甚至与邻居交换位置来遍历所有可能的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

Now an emergent task for you is to open a password lock. The password is consisted of four digits. Each digit is numbered from 1 to 9.
Each time, you can add or minus 1 to any digit. When add 1 to ‘9’, the digit will change to be ‘1’ and when minus 1 to ‘1’, the digit will change to be ‘9’. You can also exchange the digit with its neighbor. Each action will take one step.

Now your task is to use minimal steps to open the lock.

Note: The leftmost digit is not the neighbor of the rightmost digit.

Input

The input file begins with an integer T, indicating the number of test cases.

Each test case begins with a four digit N, indicating the initial state of the password lock. Then followed a line with anotther four dight M, indicating the password which can open the lock. There is one blank line after each test case.

Output

For each test case, print the minimal steps in one line.

Sample Input

2
1234
2144

1111
9999

Sample Output

2
4

这题其实没啥玩意,就是把四个数字的关键字当成一个标记,对每一个标记有7种操作,操作完就入队…..
并不难….
不过对我这种鶸来说是一种新思想
贴代码

#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
struct p
{
    int a, b, c, d;
    int ant;
};
int main()
{
    int n;
    cin >> n;
    while (n--)
    {
        int qqq, www;
        int a[4];
        cin >> qqq >> www;
        a[3] = qqq % 10;
        qqq = qqq / 10;
        a[2] = qqq % 10;
        qqq /= 10;
        a[1] = qqq % 10;
        qqq /= 10;
        a[0] = qqq % 10;
        qqq /= 10;
        int ea, eb, ec, ed;
        ed = www % 10;
        www /= 10;
        ec = www % 10;
        www /= 10;
        eb = www % 10;
        www /= 10;
        ea = www;
        int map[10][10][10][10] = { 0 };
        p start = { a[0],a[1],a[2],a[3] ,0};
        map[start.a][start.b][start.c][start.d] = 1;
        queue<p> q;
        q.push(start);
        while (!q.empty())
        {
            p u = q.front();
            q.pop();
            if (u.a == ea&&u.b == eb&&u.c == ec&&u.d == ed)
            {
                cout << u.ant <<endl;
                break;
            }
            for (int b = -1;b <=1;b++)
            {
                if (u.a + b == 10)
                {
                    if (map[1][u.b][u.c][u.d] == 0)
                    {
                        q.push({ 1, u.b, u.c, u.d,u.ant + 1 });
                        map[1][u.b][u.c][u.d] = 1;
                    }
                }
                else if(u.a + b == 0)
                {
                    if (map[9][u.b][u.c][u.d] == 0)
                    {
                        q.push({ 9, u.b, u.c, u.d,u.ant + 1 });
                        map[9][u.b][u.c][u.d] = 1;
                    }
                }
                else
                {
                    if (map[u.a + b][u.b][u.c][u.d] == 0) 
                    {
                        q.push({ u.a + b, u.b, u.c, u.d,u.ant + 1 }); 
                        map[u.a + b][u.b][u.c][u.d] = 1;
                    }
                }
            }
            for (int b = -1;b <= 1;b++)
            {
                if (u.b + b == 10)
                {
                    if (map[u.a][1][u.c][u.d] == 0)
                    {
                        q.push({ u.a, 1, u.c, u.d,u.ant + 1 });
                        map[u.a][1][u.c][u.d] = 1;
                    }
                }
                else if (u.b + b == 0)
                {
                    if (map[u.a][9][u.c][u.d] == 0)
                    {
                        q.push({ u.a, 9, u.c, u.d,u.ant + 1 });
                        map[u.a][9][u.c][u.d] = 1;
                    }
                }
                else
                {
                    if (map[u.a][u.b + b][u.c][u.d] == 0)
                    {
                        q.push({ u.a , u.b + b, u.c, u.d,u.ant + 1 });
                        map[u.a][u.b + b][u.c][u.d] = 1;
                    }
                }
            }
            for (int b = -1;b <= 1;b++)
            {
                if (u.c + b == 10)
                {
                    if (map[u.a][u.b][1][u.d] == 0)
                    {
                        q.push({ u.a,u.b, 1, u.d,u.ant + 1 });
                        map[u.a][u.b][1][u.d] = 1;
                    }
                }
                else if (u.c + b == 0)
                {
                    if (map[u.a][u.b][9][u.d] == 0)
                    {
                        q.push({ u.a, u.b, 9, u.d,u.ant + 1 });
                        map[u.a][u.b][9][u.d] = 1;
                    }
                }
                else
                {
                    if (map[u.a][u.b][u.c + b][u.d] == 0)
                    {
                        q.push({ u.a , u.b , u.c + b, u.d,u.ant + 1 });
                        map[u.a][u.b][u.c + b][u.d] = 1;
                    }
                }
            }
            for (int b = -1;b <= 1;b++)
            {
                if (u.d + b == 10)
                {
                    if (map[u.a][u.b][u.c][1] == 0)
                    {
                        q.push({ u.a,u.b, u.c, 1,u.ant + 1 });
                        map[u.a][u.b][u.c][1] = 1;
                    }
                }
                else if (u.d + b == 0)
                {
                    if (map[u.a][u.b][u.c][9] == 0)
                    {
                        q.push({ u.a, u.b, u.c, 9,u.ant + 1 });
                        map[u.a][u.b][u.c][9] = 1;
                    }
                }
                else
                {
                    if (map[u.a][u.b][u.c][u.d + b] == 0)
                    {
                        q.push({ u.a , u.b , u.c , u.d + b,u.ant + 1 });
                        map[u.a][u.b][u.c][u.d + b] = 1;
                    }
                }
            }
            if (map[u.b][u.a][u.c][u.d] == 0)
            {
                q.push({ u.b,u.a,u.c,u.d,u.ant + 1 });
                map[u.b][u.a][u.c][u.d] = 1;
            }
            if (map[u.a][u.c][u.b][u.d] == 0)
            {
                q.push({ u.a,u.c,u.b,u.d,u.ant + 1 });
                map[u.a][u.c][u.b][u.d] = 1;
            }
            if (map[u.a][u.b][u.d][u.c] == 0)
            {
                q.push({ u.a,u.b,u.d,u.c,u.ant + 1 });
                map[u.a][u.b][u.d][u.c] = 1;
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值