“如果卷积神经网络只要你学一种,就学resnet就行了。”
随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力,在这种网络中,添加层会使网络更具表现力, 为了取得质的突破,我们需要一些数学基础知识。
7.6.1. 函数类
关于resnet的数学原理我觉得就用书上这两个图片就能搞清楚:
因为我们的模型如果不能保证嵌套的话,优化复杂度会导致不一定朝着最优值发展,因此只有当较复杂的函数类包含较小的函数类时,我们才能确保提高它们的性能。
7.6.2. 残差块
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module): #@save
def __init__(self, input_channels, num_channels,
use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels,
kernel_size=3, padding=1, stride=strides)
#上面这个可以指定stride 下面默认等于一了 上面调为2可以实现下面讲的高宽减2
self.conv2 = nn.Conv2d(num_channels, num_channels,
kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels,
kernel_size=1, stride=strides)
#这里的stride就是为了match到上面高宽
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:#残差residual操作在这里
X = self.conv3(X)
Y += X
return F.relu(Y)
如 图7.6.3所示,此代码生成两种类型的网络: 一种是当use_1x1conv=False
时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True
时,添加通过1*1卷积调整通道和分辨率。
下面我们来查看输入和输出形状一致的情况。
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
输出:torch.Size([4, 3, 6, 6])
我们也可以在增加输出通道数的同时,减半输出的高和宽。
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
输出:torch.Size([4, 6, 3, 3])
7.6.3. ResNet模型
上面实现了层,现在开始实现块(block),ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。
def resnet_block(input_channels, num_channels, num_residuals,
first_block=False):
#num_residuals代表需要的残差卷积层
blk = []#这里还是用列表 之前讲过的为了一个for循环生成很多个层
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels,
use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
每个模块有4个卷积层(不包括恒等映射的1*1卷积层)。 加上第一个7*7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。 图7.6.4描述了完整的ResNet-18。
在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征:
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
输出:
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 128, 28, 28])
Sequential output shape: torch.Size([1, 256, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape: torch.Size([1, 512, 1, 1])
Flatten output shape: torch.Size([1, 512])
Linear output shape: torch.Size([1, 10])
7.6.4. 训练模型
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
输出:
loss 0.012, train acc 0.997, test acc 0.893
5032.7 examples/sec on cuda:0
7.6.5. 小结
-
学习嵌套函数(nested function)是训练神经网络的理想情况。在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端情况)。
-
残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。
-
利用残差块(residual blocks)可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播。
-
残差网络(ResNet)对随后的深层神经网络设计产生了深远影响。
最后有一个问题我感觉挺好的,为什么即使函数类是嵌套的,我们仍然要限制增加函数的复杂性呢?
因为嵌套性不能防止过拟合,复杂度国家会导致过度拟合训练数据的噪声,导致泛化误差增大。