#深度学习# #人工智能# #神经网络#
现代卷积神经网络
7.5 批量规范化
可持续加速深层网络的收敛速度,是一种线性变化。
批归一化原理公式思想:(B表批量大小,μB、B表示根据输入的小批量数据随机计算的均值和方差;γ和β是新学习到的新方差和均值)
批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放,可以加速收敛速度,但一般不改变模型精度。
7.5.1 训练深层网络
批量规范化应用于单个可选层(也可以应用到所有层),其原理如下:在每次训练迭代中,我们首先规范化输入,即通过减去其均值并除以其标准差,其中两者均基于当前小批量处理。接下来,我们应用比例系数和比例偏移。
请注意,如果我们尝试使用大小为1的小批量应用批量规范化,我们将无法学到任何东西。这是因为在减去均值之后,每个隐藏单元将为0。所以,只有使用足够大的小批量,批量规范化这种方法才是有效且稳定的。请注意,在应用批量规范化时,批量大小的选择可能比没有批量规范化时更重要。
7.5.2 批量规范化层
通常,批量规范化层置于全连接层中的仿射变换和激活函数之间。
对于卷积层,我们可以在卷积层之后和非线性激活函数之前应用批量规范化。当卷积有多个输出通道时,我们需要对这些通道的“每个”输出执行批量规范化,每个通道都有自己的拉伸(scale)和偏移(shift)参数,这两个参数都是标量。
7.5.3 从零实现
由于接下来的网络训练需用到GPU,因此全在移动九天平台上进行操作。有免费GPU v100可使用。
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):#gamma, beta为可学习的两个参数,moving_mean, moving_var可认为是全局的均值和方差(整个数据集而非小批量),eps避免除0,momentum用来更新moving_mean, moving_va的东西(通常取0.9或者其他的一个固定值)。
# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:#为4就是2d卷积层
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)#0批量大小,1输出通道,2和3是高和宽。按照通道求均值,得1xnx1x1的4d特征。
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
# 训练模式下,用当前的均值和方差做标准化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移动平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 缩放和移位
return Y, moving_mean.data